Av(1243, 1324, 1432, 2431, 3412)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{8}-x^{7}-9 x^{6}+21 x^{5}-38 x^{4}+43 x^{3}-26 x^{2}+8 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 140, 346, 842, 2055, 5070, 12665, 31991, 81529, 209185, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{4} F \! \left(x \right)+x^{8}-x^{7}-9 x^{6}+21 x^{5}-38 x^{4}+43 x^{3}-26 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 140\)
\(\displaystyle a \! \left(7\right) = 346\)
\(\displaystyle a \! \left(8\right) = 842\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{3}}{3}-\frac{5 n^{2}}{2}+2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)+\frac{n}{6}+4, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(-6 \sqrt{5}+30\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{60}+\frac{\left(6 \sqrt{5}+30\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{60}+\frac{n^{3}}{3}-\frac{5 n^{2}}{2}+\\\frac{25 n}{6}+\frac{3 \,2^{n}}{4}-4 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 48 rules.

Found on July 23, 2021.

Finding the specification took 12 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 48 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= x\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{14}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{14}\! \left(x \right) F_{24}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{27}\! \left(x \right) &= 0\\ F_{28}\! \left(x \right) &= F_{14}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{14}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{14}\! \left(x \right) F_{40}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{14}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{14}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{11} \left(x \right)^{3}\\ \end{align*}\)