Av(1243, 1324, 1432, 2413, 4231)
Generating Function
\(\displaystyle -\frac{6 x^{8}-12 x^{7}+17 x^{6}-30 x^{5}+48 x^{4}-48 x^{3}+27 x^{2}-8 x +1}{\left(2 x -1\right)^{2} \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 135, 323, 740, 1646, 3590, 7730, 16505, 35043, 74105, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right)^{2} \left(x -1\right)^{5} F \! \left(x \right)+6 x^{8}-12 x^{7}+17 x^{6}-30 x^{5}+48 x^{4}-48 x^{3}+27 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 323\)
\(\displaystyle a \! \left(8\right) = 740\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)+\frac{\left(n^{2}-17 n +48\right) \left(n^{2}-5 n +10\right)}{24}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 323\)
\(\displaystyle a \! \left(8\right) = 740\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)+\frac{\left(n^{2}-17 n +48\right) \left(n^{2}-5 n +10\right)}{24}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 6-\frac{95 n}{12}+\frac{59 n^{2}}{24}-\frac{7 n^{3}}{12}+\frac{n^{4}}{24}+\frac{2^{n} n}{4}+2^{n} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 100 rules.
Found on July 23, 2021.Finding the specification took 4 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 100 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{10}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{17}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{10}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{10}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{10}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{10}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{10}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{10}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{10}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{58}\! \left(x \right) &= 2 F_{59}\! \left(x \right)+F_{60}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{59}\! \left(x \right) &= 0\\
F_{60}\! \left(x \right) &= F_{10}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{10}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 2 F_{59}\! \left(x \right)+F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{10}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{10}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{10}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{10}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{76}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{10}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{10}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{76}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{10}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{86}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{10}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{86}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{10}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{92}\! \left(x \right)+F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{10}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{10}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{10}\! \left(x \right) F_{84}\! \left(x \right)\\
\end{align*}\)