Av(1243, 1324, 1432, 2413, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{6}-4 x^{5}+6 x^{4}-12 x^{3}+13 x^{2}-6 x +1}{\left(x -1\right) \left(x^{2}-3 x +1\right) \left(x^{3}-2 x^{2}+3 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 158, 437, 1196, 3250, 8783, 23630, 63340, 169255, 451084, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}-3 x +1\right) \left(x^{3}-2 x^{2}+3 x -1\right) F \! \left(x \right)-x^{6}+4 x^{5}-6 x^{4}+12 x^{3}-13 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 158\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)-5 a \! \left(n +1\right)+10 a \! \left(n +2\right)-12 a \! \left(n +3\right)+6 a \! \left(n +4\right)-1, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle -\frac{328 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+15 Z^{4}-22 Z^{3}+18 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{115}+\frac{1911 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+15 Z^{4}-22 Z^{3}+18 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{115}-\frac{4556 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+15 Z^{4}-22 Z^{3}+18 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{115}+\frac{6277 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+15 Z^{4}-22 Z^{3}+18 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{115}-\frac{4451 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+15 Z^{4}-22 Z^{3}+18 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{115}+\frac{1032 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-6 Z^{5}+15 Z^{4}-22 Z^{3}+18 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{115}+\left(\left\{\begin{array}{cc}1 & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 72 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 72 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{31}\! \left(x \right) &= 0\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{36}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{48}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{52}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{48}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{62}\! \left(x \right)\\ \end{align*}\)