Av(1243, 1324, 1432, 2314, 4213)
Generating Function
\(\displaystyle -\frac{2 x^{5}-6 x^{4}+9 x^{3}-10 x^{2}+5 x -1}{\left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 146, 366, 887, 2109, 4962, 11608, 27073, 63041, 146674, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+2 x^{5}-6 x^{4}+9 x^{3}-10 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{2}}{2}+a \! \left(n \right)-2 a \! \left(n +1\right)+3 a \! \left(n +2\right)+\frac{5 n}{2}+1, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{2}}{2}+a \! \left(n \right)-2 a \! \left(n +1\right)+3 a \! \left(n +2\right)+\frac{5 n}{2}+1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{\left(-207 \left(\left(-\frac{11 \,\mathrm{I}}{69}-\frac{11 \sqrt{3}}{207}\right) \sqrt{23}+\mathrm{I} \sqrt{3}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+150 \sqrt{23}\, \left(\mathrm{I}-\frac{\sqrt{3}}{3}\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{6900}+\frac{\left(207 \left(\left(-\frac{11 \,\mathrm{I}}{69}+\frac{11 \sqrt{3}}{207}\right) \sqrt{23}+\mathrm{I} \sqrt{3}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}-150 \sqrt{23}\, 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}} \left(\mathrm{I}+\frac{\sqrt{3}}{3}\right)\right) \left(-\frac{11 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{6900}+\frac{\left(\left(-22 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}+414 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+100 \,2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{23}\, \sqrt{3}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{6900}-\frac{n^{2}}{2}-\frac{3 n}{2}+1\)
This specification was found using the strategy pack "Point Placements" and has 77 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 77 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{31}\! \left(x \right) &= 0\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{36}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{51}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{31}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{29}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
\end{align*}\)