Av(1243, 1324, 1432, 2314, 3124)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(-1+x \right) \left(x^{3}-2 x^{2}+3 x -1\right)}{x^{5}-3 x^{4}+7 x^{3}-8 x^{2}+5 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 180, 545, 1647, 4977, 15043, 45473, 137464, 415553, 1256212, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{5}-3 x^{4}+7 x^{3}-8 x^{2}+5 x -1\right) F \! \left(x \right)+\left(-1+x \right) \left(x^{3}-2 x^{2}+3 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+7 a \! \left(n +2\right)-8 a \! \left(n +3\right)+5 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{122 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +3}}{2617}-\frac{122 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +3}}{2617}-\frac{122 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +3}}{2617}-\frac{122 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +3}}{2617}-\frac{122 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +3}}{2617}+\frac{432 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +2}}{2617}+\frac{432 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +2}}{2617}+\frac{432 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +2}}{2617}+\frac{432 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +2}}{2617}+\frac{432 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +2}}{2617}-\frac{959 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +1}}{2617}-\frac{959 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +1}}{2617}-\frac{959 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +1}}{2617}-\frac{959 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +1}}{2617}-\frac{959 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +1}}{2617}-\frac{171 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n -1}}{2617}-\frac{171 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n -1}}{2617}-\frac{171 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n -1}}{2617}-\frac{171 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n -1}}{2617}-\frac{171 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n -1}}{2617}+\frac{1409 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n}}{2617}+\frac{1409 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n}}{2617}+\frac{1409 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n}}{2617}+\frac{1409 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n}}{2617}+\frac{1409 \mathit{RootOf} \left(Z^{5}-3 Z^{4}+7 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n}}{2617}\)

This specification was found using the strategy pack "Point Placements" and has 52 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 52 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{27}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{35}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{41}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{47}\! \left(x \right)\\ \end{align*}\)