Av(1243, 1324, 1432, 2134, 2143)
Generating Function
\(\displaystyle -\frac{x^{2}-3 x +1}{x^{3}-3 x^{2}+4 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 60, 189, 595, 1873, 5896, 18560, 58425, 183916, 578949, 1822473, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-3 x^{2}+4 x -1\right) F \! \left(x \right)+x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 3\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-3 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 3\)
Explicit Closed Form
\(\displaystyle -\frac{7 \left(\frac{3 \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{1}{6}}}{3}+\frac{31 \,3^{\frac{2}{3}}}{9}\right) 2^{\frac{1}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{2}+124+\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) 2^{\frac{2}{3}} \sqrt{31}\, \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\left(\frac{61 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-\frac{3 \,3^{\frac{1}{6}}}{61}\right) \sqrt{31}-\frac{651 \,\mathrm{I} \,3^{\frac{1}{6}}}{61}+\frac{31 \,3^{\frac{2}{3}}}{61}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{42}+\frac{17 \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{11 \,3^{\frac{5}{6}}}{51}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{51}-\frac{31 \,3^{\frac{1}{3}}}{17}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{14}-\frac{2 \,\mathrm{I} \sqrt{31}}{7}-62\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(-\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}+\left(\frac{16 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-\frac{45 \,3^{\frac{1}{6}}}{16}\right) \sqrt{31}-\frac{93 \,\mathrm{I} \,3^{\frac{1}{6}}}{8}+\frac{155 \,3^{\frac{2}{3}}}{16}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{21}+\left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{10 \,3^{\frac{5}{6}}}{21}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{21}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+\frac{2 \,\mathrm{I} \sqrt{31}}{7}-62\right) \left(-\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+1+\frac{\left(\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}\right)^{-n}-\frac{372 \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{31}\, 3^{\frac{1}{6}} 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{7}\right)}{138384}\)
This specification was found using the strategy pack "Point Placements" and has 56 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 56 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{37}\! \left(x \right)+F_{38}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{37}\! \left(x \right) &= 0\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
\end{align*}\)