Av(1243, 1324, 1342, 3241, 4213)
Generating Function
\(\displaystyle -\frac{4 x^{10}-12 x^{9}+16 x^{8}-5 x^{7}-22 x^{6}+41 x^{5}-53 x^{4}+49 x^{3}-27 x^{2}+8 x -1}{\left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(-1+x \right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 123, 270, 576, 1226, 2637, 5755, 12735, 28501, 64331, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(-1+x \right)^{4} F \! \left(x \right)+4 x^{10}-12 x^{9}+16 x^{8}-5 x^{7}-22 x^{6}+41 x^{5}-53 x^{4}+49 x^{3}-27 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 123\)
\(\displaystyle a \! \left(7\right) = 270\)
\(\displaystyle a \! \left(8\right) = 576\)
\(\displaystyle a \! \left(9\right) = 1226\)
\(\displaystyle a \! \left(10\right) = 2637\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)-8 a \! \left(n +2\right)+5 a \! \left(n +3\right)+\frac{\left(n +5\right) \left(2 n^{2}-13 n +12\right)}{6}, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 123\)
\(\displaystyle a \! \left(7\right) = 270\)
\(\displaystyle a \! \left(8\right) = 576\)
\(\displaystyle a \! \left(9\right) = 1226\)
\(\displaystyle a \! \left(10\right) = 2637\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)-8 a \! \left(n +2\right)+5 a \! \left(n +3\right)+\frac{\left(n +5\right) \left(2 n^{2}-13 n +12\right)}{6}, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ \frac{\left(-46 \,2^{\frac{1}{3}} \left(\left(-\frac{4 \sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}-\frac{12 \,\mathrm{I} \sqrt{23}}{23}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+4600+115 \left(\left(-\frac{\sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}+\frac{3 \,\mathrm{I} \sqrt{23}}{23}-1\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{13800}\\+\\\frac{\left(-115 \,2^{\frac{2}{3}} \left(\left(\frac{\sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}+\frac{3 \,\mathrm{I} \sqrt{23}}{23}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+4600+46 \,2^{\frac{1}{3}} \left(\left(\frac{4 \sqrt{23}}{23}+\mathrm{I}\right) \sqrt{3}-\frac{12 \,\mathrm{I} \sqrt{23}}{23}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{13800}\\+\\\frac{\left(\left(10 \sqrt{23}\, 2^{\frac{2}{3}} \sqrt{3}+230 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+4600+\left(-16 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}+92 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{13800}\\+\frac{n^{3}}{3}-\frac{n^{2}}{2}-\frac{41 n}{6}+2^{-1+n}+13 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 80 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 80 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{27}\! \left(x \right) &= 0\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{65}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{32}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{75}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{74}\! \left(x \right)\\
\end{align*}\)