Av(1243, 1324, 1342, 3142, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x -1\right) \sqrt{-4 x +1}-2 x^{2}-x +1}{2 x \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 60, 191, 619, 2048, 6909, 23704, 82489, 290500, 1033399, 3707838, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{4} F \left(x \right)^{2}+\left(x +1\right) \left(2 x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{3}+2 x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +2\right) = -\frac{2 \left(3+2 n \right) a \! \left(n \right)}{3+n}+\frac{\left(9+5 n \right) a \! \left(1+n \right)}{3+n}+\frac{3+3 n}{3+n}, \quad n \geq 4\)

This specification was found using the strategy pack "Point Placements" and has 17 rules.

Found on July 23, 2021.

Finding the specification took 6 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 17 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15} \left(x \right)^{2} F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\ \end{align*}\)