Av(1243, 1324, 1342, 3124)
Generating Function
\(\displaystyle \frac{\left(x -1\right) \sqrt{-4 x +1}-2 x^{2}+5 x -1}{2 x^{3}-8 x^{2}+10 x -2}\)
Counting Sequence
1, 1, 2, 6, 20, 69, 243, 869, 3145, 11491, 42312, 156807, 584288, 2187298, 8221257, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-4 x^{2}+5 x -1\right) F \left(x
\right)^{2}+\left(2 x^{2}-5 x +1\right) F \! \left(x \right)+x = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(3+2 n \right) a \! \left(n \right)}{n +5}-\frac{\left(41+21 n \right) a \! \left(n +1\right)}{n +5}+\frac{\left(103+41 n \right) a \! \left(n +2\right)}{n +5}-\frac{3 \left(37+11 n \right) a \! \left(n +3\right)}{n +5}+\frac{2 \left(21+5 n \right) a \! \left(n +4\right)}{n +5}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(3+2 n \right) a \! \left(n \right)}{n +5}-\frac{\left(41+21 n \right) a \! \left(n +1\right)}{n +5}+\frac{\left(103+41 n \right) a \! \left(n +2\right)}{n +5}-\frac{3 \left(37+11 n \right) a \! \left(n +3\right)}{n +5}+\frac{2 \left(21+5 n \right) a \! \left(n +4\right)}{n +5}, \quad n \geq 5\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 125 rules.
Found on July 23, 2021.Finding the specification took 9 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 125 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{124}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{27}\! \left(x \right) F_{6}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= x\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\
F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)\\
F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right)\\
F_{14}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= y x\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{16}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x , 1\right)\\
F_{28}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y\right)+F_{30}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{28}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{31}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{107}\! \left(x , y\right)+F_{32}\! \left(x , y\right)+F_{64}\! \left(x , y\right)\\
F_{32}\! \left(x , y\right) &= F_{33}\! \left(x , y\right)\\
F_{33}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{34}\! \left(x , y\right)\\
F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)+F_{63}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{36}\! \left(x \right)+F_{43}\! \left(x , y\right)\\
F_{36}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{40}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{43}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{47}\! \left(x , y\right)\\
F_{44}\! \left(x , y\right) &= F_{45}\! \left(x , y\right)\\
F_{45}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{46}\! \left(x , y\right)\\
F_{46}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{44}\! \left(x , y\right)\\
F_{47}\! \left(x , y\right) &= F_{21}\! \left(x \right)+F_{48}\! \left(x , y\right)+F_{50}\! \left(x , y\right)\\
F_{48}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{49}\! \left(x , y\right)\\
F_{49}\! \left(x , y\right) &= F_{37}\! \left(x \right)+F_{47}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= F_{51}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{51}\! \left(x , y\right) &= F_{52}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\
F_{52}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{53}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{54}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{52}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= F_{21}\! \left(x \right)+F_{57}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{58}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{56}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{60}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{60}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{56}\! \left(x , y\right)\\
F_{61}\! \left(x , y\right) &= F_{62}\! \left(x , y\right)\\
F_{62}\! \left(x , y\right) &= F_{55}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{63}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{46}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{64}\! \left(x , y\right) &= F_{65}\! \left(x , y\right)\\
F_{65}\! \left(x , y\right) &= F_{66}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{66}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)+F_{11}\! \left(x \right)+F_{67}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{68}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= -\frac{-y F_{34}\! \left(x , y\right)+F_{34}\! \left(x , 1\right)}{-1+y}\\
F_{69}\! \left(x , y\right) &= F_{70}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= F_{71}\! \left(x , y\right) F_{76}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{71}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{72}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\
F_{72}\! \left(x , y\right) &= F_{73}\! \left(x , y\right)\\
F_{73}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{19}\! \left(x \right) F_{46}\! \left(x , y\right)\\
F_{74}\! \left(x , y\right) &= F_{75}\! \left(x , y\right)\\
F_{75}\! \left(x , y\right) &= F_{19}\! \left(x \right) F_{71}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x , 1\right)\\
F_{77}\! \left(x , y\right) &= F_{104}\! \left(x , y\right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x , 1\right)\\
F_{79}\! \left(x , y\right) &= F_{80}\! \left(x , y\right)+F_{87}\! \left(x , y\right)\\
F_{80}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{81}\! \left(x , y\right)\\
F_{81}\! \left(x , y\right) &= F_{82}\! \left(x , y\right)\\
F_{82}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{83}\! \left(x , y\right)\\
F_{83}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)+F_{84}\! \left(x , y\right)\\
F_{84}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{85}\! \left(x , y\right)\\
F_{85}\! \left(x , y\right) &= F_{86}\! \left(x , y\right)\\
F_{86}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{84}\! \left(x , y\right)\\
F_{87}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{88}\! \left(x , y\right)\\
F_{88}\! \left(x , y\right) &= F_{21}\! \left(x \right)+F_{89}\! \left(x , y\right)+F_{91}\! \left(x , y\right)\\
F_{89}\! \left(x , y\right) &= F_{9}\! \left(x \right) F_{90}\! \left(x , y\right)\\
F_{90}\! \left(x , y\right) &= F_{81}\! \left(x , y\right)+F_{88}\! \left(x , y\right)\\
F_{91}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{92}\! \left(x , y\right)\\
F_{92}\! \left(x , y\right) &= F_{93}\! \left(x , y\right)+F_{96}\! \left(x , y\right)\\
F_{93}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{94}\! \left(x , y\right)\\
F_{94}\! \left(x , y\right) &= F_{95}\! \left(x , y\right)\\
F_{95}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{93}\! \left(x , y\right)\\
F_{96}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\
F_{97}\! \left(x , y\right) &= F_{100}\! \left(x , y\right)+F_{21}\! \left(x \right)+F_{98}\! \left(x , y\right)\\
F_{98}\! \left(x , y\right) &= F_{9}\! \left(x \right) F_{99}\! \left(x , y\right)\\
F_{99}\! \left(x , y\right) &= F_{44}\! \left(x , y\right)+F_{97}\! \left(x , y\right)\\
F_{100}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\
F_{101}\! \left(x , y\right) &= F_{17}\! \left(x \right)+F_{97}\! \left(x , y\right)\\
F_{102}\! \left(x , y\right) &= F_{103}\! \left(x , y\right)\\
F_{103}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{96}\! \left(x , y\right)\\
F_{104}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{15}\! \left(x , y\right) F_{19}\! \left(x \right)\\
F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right)\\
F_{106}\! \left(x , y\right) &= F_{68}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{107}\! \left(x , y\right) &= F_{108}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{108}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{109}\! \left(x , y\right)+F_{116}\! \left(x , y\right)+F_{119}\! \left(x , y\right)+F_{121}\! \left(x , y\right)\\
F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\
F_{110}\! \left(x , y\right) &= -\frac{-y F_{111}\! \left(x , y\right)+F_{111}\! \left(x , 1\right)}{-1+y}\\
F_{111}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{112}\! \left(x , y\right)+F_{113}\! \left(x , y\right)+F_{114}\! \left(x , y\right)\\
F_{112}\! \left(x , y\right) &= F_{111}\! \left(x , y\right) F_{15}\! \left(x , y\right)\\
F_{113}\! \left(x , y\right) &= F_{108}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{114}\! \left(x , y\right) &= F_{115}\! \left(x , y\right)\\
F_{115}\! \left(x , y\right) &= F_{66}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{116}\! \left(x , y\right) &= F_{117}\! \left(x , y\right)\\
F_{117}\! \left(x , y\right) &= F_{118}\! \left(x \right) F_{71}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{111}\! \left(x , 1\right)\\
F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{120}\! \left(x , y\right) &= -\frac{-y F_{108}\! \left(x , y\right)+F_{108}\! \left(x , 1\right)}{-1+y}\\
F_{121}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)\\
F_{122}\! \left(x , y\right) &= F_{123}\! \left(x , y\right) F_{9}\! \left(x \right)\\
F_{123}\! \left(x , y\right) &= -\frac{-y F_{66}\! \left(x , y\right)+F_{66}\! \left(x , 1\right)}{-1+y}\\
F_{124}\! \left(x \right) &= F_{30}\! \left(x , 1\right)\\
\end{align*}\)