Av(1243, 1324, 1342, 2431, 3412)
Generating Function
\(\displaystyle \frac{x^{8}-3 x^{7}-2 x^{6}+13 x^{5}-23 x^{4}+29 x^{3}-20 x^{2}+7 x -1}{\left(x^{2}-3 x +1\right) \left(-1+x \right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 138, 333, 791, 1898, 4651, 11645, 29657, 76411, 198289, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(-1+x \right)^{5} F \! \left(x \right)+x^{8}-3 x^{7}-2 x^{6}+13 x^{5}-23 x^{4}+29 x^{3}-20 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 138\)
\(\displaystyle a \! \left(7\right) = 333\)
\(\displaystyle a \! \left(8\right) = 791\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-\frac{\left(-1+n \right) \left(n +1\right) \left(n^{2}+10 n -48\right)}{24}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 138\)
\(\displaystyle a \! \left(7\right) = 333\)
\(\displaystyle a \! \left(8\right) = 791\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)-\frac{\left(-1+n \right) \left(n +1\right) \left(n^{2}+10 n -48\right)}{24}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(-12 \sqrt{5}+60\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{\left(12 \sqrt{5}+60\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{n^{4}}{24}+\frac{n^{3}}{4}-\\\frac{61 n^{2}}{24}+\frac{25 n}{4}-5 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 34 rules.
Found on July 23, 2021.Finding the specification took 6 seconds.
Copy 34 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{14}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11} \left(x \right)^{2} F_{14}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{11}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{14}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{26}\! \left(x \right) F_{30}\! \left(x \right)\\
\end{align*}\)