Av(1243, 1324, 1342, 2413, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{5 x^{7}-26 x^{6}+58 x^{5}-81 x^{4}+69 x^{3}-34 x^{2}+9 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 146, 367, 899, 2189, 5359, 13257, 33169, 83840, 213697, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{5} F \! \left(x \right)+5 x^{7}-26 x^{6}+58 x^{5}-81 x^{4}+69 x^{3}-34 x^{2}+9 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 146\)
\(\displaystyle a \! \left(7\right) = 367\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{4}}{24}-\frac{n^{3}}{4}-\frac{25 n^{2}}{24}+2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)+\frac{5 n}{4}+1, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{\left(-12 \sqrt{5}+60\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{\left(12 \sqrt{5}+60\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{n^{4}}{24}-\frac{n^{3}}{4}-\frac{n^{2}}{24}-\frac{3 n}{4}+2^{n}-1\)

This specification was found using the strategy pack "Point Placements" and has 31 rules.

Found on July 23, 2021.

Finding the specification took 4 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 31 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{23}\! \left(x \right) &= 0\\ F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{14}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\ \end{align*}\)