Av(1243, 1324, 1342, 2341, 4231)
Generating Function
\(\displaystyle \frac{x^{9}-7 x^{8}+35 x^{7}-104 x^{6}+170 x^{5}-171 x^{4}+110 x^{3}-44 x^{2}+10 x -1}{\left(2 x -1\right)^{2} \left(x -1\right)^{7}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 158, 405, 971, 2209, 4835, 10304, 21587, 44781, 92448, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right)^{2} \left(x -1\right)^{7} F \! \left(x \right)-x^{9}+7 x^{8}-35 x^{7}+104 x^{6}-170 x^{5}+171 x^{4}-110 x^{3}+44 x^{2}-10 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 158\)
\(\displaystyle a \! \left(7\right) = 405\)
\(\displaystyle a \! \left(8\right) = 971\)
\(\displaystyle a \! \left(9\right) = 2209\)
\(\displaystyle a \! \left(n +2\right) = \frac{n^{6}}{720}-\frac{n^{5}}{48}-\frac{n^{4}}{144}+\frac{29 n^{3}}{48}-\frac{269 n^{2}}{180}-4 a \! \left(n \right)+4 a \! \left(n +1\right)+\frac{23 n}{12}+1, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 158\)
\(\displaystyle a \! \left(7\right) = 405\)
\(\displaystyle a \! \left(8\right) = 971\)
\(\displaystyle a \! \left(9\right) = 2209\)
\(\displaystyle a \! \left(n +2\right) = \frac{n^{6}}{720}-\frac{n^{5}}{48}-\frac{n^{4}}{144}+\frac{29 n^{3}}{48}-\frac{269 n^{2}}{180}-4 a \! \left(n \right)+4 a \! \left(n +1\right)+\frac{23 n}{12}+1, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ -1-\frac{11 n}{10}+\frac{7 \,2^{n}}{4}-\frac{7 n^{4}}{144}+\frac{5 n^{3}}{48}-\frac{n^{5}}{240}+\frac{n^{6}}{720}-\frac{343 n^{2}}{360}+\frac{2^{n} n}{4} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 121 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 121 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{30}\! \left(x \right) &= 0\\
F_{31}\! \left(x \right) &= F_{12}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{35}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= 2 F_{30}\! \left(x \right)+F_{47}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{30}\! \left(x \right)+F_{55}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{61}\! \left(x \right) &= 2 F_{30}\! \left(x \right)+F_{62}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{73}\! \left(x \right) &= 3 F_{30}\! \left(x \right)+F_{74}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= 3 F_{30}\! \left(x \right)+F_{79}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{12}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{78}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{12}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{30}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{12}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{30}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= 2 F_{30}\! \left(x \right)+F_{59}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{12}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{12}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{107}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{106}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{109}\! \left(x \right) &= 2 F_{30}\! \left(x \right)+F_{110}\! \left(x \right)+F_{120}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{114}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{115}\! \left(x \right) &= 3 F_{30}\! \left(x \right)+F_{116}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{101}\! \left(x \right) F_{12}\! \left(x \right)\\
\end{align*}\)