Av(1243, 1324, 1342, 2341, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{-2 \left(-1+x \right)^{4} \left(x -\frac{1}{2}\right) \sqrt{1-4 x}+2 x^{6}+4 x^{5}-11 x^{4}+16 x^{3}-14 x^{2}+6 x -1}{2 x \left(2 x -1\right) \left(-1+x \right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 168, 506, 1585, 5165, 17382, 59919, 210213, 747203, 2682904, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(2 x -1\right)^{2} \left(-1+x \right)^{8} F \left(x \right)^{2}-\left(2 x -1\right) \left(2 x^{6}+4 x^{5}-11 x^{4}+16 x^{3}-14 x^{2}+6 x -1\right) \left(-1+x \right)^{4} F \! \left(x \right)+x^{11}+8 x^{10}-44 x^{9}+148 x^{8}-332 x^{7}+508 x^{6}-541 x^{5}+399 x^{4}-199 x^{3}+64 x^{2}-12 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 168\)
\(\displaystyle a \! \left(7\right) = 506\)
\(\displaystyle a \! \left(8\right) = 1585\)
\(\displaystyle a \! \left(n +3\right) = \frac{8 \left(2 n +1\right) a \! \left(n \right)}{n +4}-\frac{4 \left(5 n +8\right) a \! \left(1+n \right)}{n +4}+\frac{2 \left(4 n +11\right) a \! \left(n +2\right)}{n +4}-\frac{n^{4}-15 n^{3}+48 n^{2}-8 n -16}{2 \left(n +4\right)}, \quad n \geq 9\)

This specification was found using the strategy pack "Requirement Placements Tracked Fusion" and has 112 rules.

Found on July 23, 2021.

Finding the specification took 11 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 112 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{6}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{24}\! \left(x \right) &= 0\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{18}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{31}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{15}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{38}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{42}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{54}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{63}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{68}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{7}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{77}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{7}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{82}\! \left(x \right) &= 2 F_{24}\! \left(x \right)+F_{72}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x , 1\right)\\ F_{89}\! \left(x , y\right) &= F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{91}\! \left(x , y\right)\\ F_{91}\! \left(x , y\right) &= F_{101}\! \left(x , y\right) F_{9}\! \left(x \right) F_{92}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{111}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{78}\! \left(x \right)+F_{94}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{95}\! \left(x , y\right)\\ F_{95}\! \left(x , y\right) &= F_{96}\! \left(x , y\right)\\ F_{96}\! \left(x , y\right) &= F_{9}\! \left(x \right) F_{97}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{95}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{101}\! \left(x , y\right)\\ F_{100}\! \left(x , y\right) &= y x\\ F_{101}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{98}\! \left(x , y\right)\\ F_{102}\! \left(x , y\right) &= 2 F_{24}\! \left(x \right)+F_{103}\! \left(x , y\right)+F_{110}\! \left(x , y\right)\\ F_{103}\! \left(x , y\right) &= F_{104}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{104}\! \left(x , y\right) &= F_{102}\! \left(x , y\right)+F_{105}\! \left(x , y\right)\\ F_{105}\! \left(x , y\right) &= F_{106}\! \left(x , y\right)+F_{108}\! \left(x , y\right)+F_{24}\! \left(x \right)\\ F_{106}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{107}\! \left(x , y\right)\\ F_{107}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)+F_{7}\! \left(x \right)\\ F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right) F_{9}\! \left(x \right)\\ F_{109}\! \left(x , y\right) &= F_{105}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\ F_{110}\! \left(x , y\right) &= F_{9}\! \left(x \right) F_{94}\! \left(x , y\right)\\ F_{111}\! \left(x , y\right) &= \frac{y F_{90}\! \left(x , y\right)-F_{90}\! \left(x , 1\right)}{-1+y}\\ \end{align*}\)