Av(1243, 1324, 1342, 1432, 4231)
Generating Function
\(\displaystyle -\frac{\left(x^{3}-x^{2}+2 x -1\right) \left(x^{6}-5 x^{5}-6 x^{4}+22 x^{3}-19 x^{2}+7 x -1\right)}{\left(2 x -1\right)^{3} \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 145, 359, 855, 1988, 4551, 10305, 23139, 51598, 114371, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right)^{3} \left(x -1\right)^{4} F \! \left(x \right)+\left(x^{3}-x^{2}+2 x -1\right) \left(x^{6}-5 x^{5}-6 x^{4}+22 x^{3}-19 x^{2}+7 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 145\)
\(\displaystyle a \! \left(7\right) = 359\)
\(\displaystyle a \! \left(8\right) = 855\)
\(\displaystyle a \! \left(9\right) = 1988\)
\(\displaystyle a \! \left(n +3\right) = -\frac{n^{3}}{6}+3 n^{2}-12 a \! \left(n +1\right)+6 a \! \left(n +2\right)+8 a \! \left(n \right)-\frac{77 n}{6}+11, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 145\)
\(\displaystyle a \! \left(7\right) = 359\)
\(\displaystyle a \! \left(8\right) = 855\)
\(\displaystyle a \! \left(9\right) = 1988\)
\(\displaystyle a \! \left(n +3\right) = -\frac{n^{3}}{6}+3 n^{2}-12 a \! \left(n +1\right)+6 a \! \left(n +2\right)+8 a \! \left(n \right)-\frac{77 n}{6}+11, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(3 n^{2}+51 n +36\right) 2^{n}}{192}+\frac{n^{3}}{6}-\frac{3 n^{2}}{2}+\frac{7 n}{3}-1 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 82 rules.
Found on July 23, 2021.Finding the specification took 7 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 82 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{36}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{45}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{12}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{51}\! \left(x \right)+F_{56}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{10}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{36}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{69}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{70}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{12}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{12}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{19}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{19} \left(x \right)^{2}\\
\end{align*}\)