Av(1243, 1324, 1342, 1423, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{7}-7 x^{6}+14 x^{5}-19 x^{4}+25 x^{3}-19 x^{2}+7 x -1}{\left(x^{2}-3 x +1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 155, 414, 1086, 2825, 7325, 18981, 49211, 127713, 331808, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x^{3}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{7}-7 x^{6}+14 x^{5}-19 x^{4}+25 x^{3}-19 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 155\)
\(\displaystyle a \! \left(7\right) = 414\)
\(\displaystyle a \! \left(n +5\right) = -\frac{n^{2}}{2}+a \! \left(n \right)-3 a \! \left(n +1\right)+3 a \! \left(n +2\right)-7 a \! \left(n +3\right)+5 a \! \left(n +4\right)-\frac{7 n}{2}-1, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{\left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{3^{\frac{5}{6}} \left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(\frac{24 \sqrt{5}\, \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,3^{\frac{1}{6}} 2^{\frac{1}{3}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n} \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{3^{\frac{5}{6}} \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(\frac{8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+8 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(\mathrm{I} \sqrt{59}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,3^{\frac{1}{6}} 2^{\frac{1}{3}}-3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{-144+48 \sqrt{5}}\right)^{n}}{5}-\frac{55 \left(\left(\frac{5664}{55} n^{2}+\frac{22656}{55} n -\frac{19824}{55}\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}+\frac{22656 \sqrt{5}\, 48^{-n} \left(3+\sqrt{5}\right)^{-n} \left(-8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-8 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{275}-\frac{177 \left(\mathrm{I}-\frac{55 \sqrt{59}}{531}\right) \sqrt{3}\, \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{55}-\frac{413 \left(\mathrm{I}-\frac{3 \sqrt{59}}{413}\right) \sqrt{3}\, \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{660}+2^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}-\frac{177}{55}\right) 3^{\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-\frac{944}{55}-\frac{3 \,2^{\frac{1}{3}} \left(\mathrm{I} \sqrt{59}-\frac{413}{9}\right) 3^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{110}\right) \left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{3^{\frac{5}{6}} \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,3^{\frac{1}{6}} 2^{\frac{1}{3}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}}{944}+\left(\frac{55 \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}-54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \,3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n} \left(\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{59}\, \sqrt{3}+\frac{3 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{59}\, \sqrt{3}}{220}-\frac{531 \,2^{\frac{2}{3}} 3^{\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{55}+\frac{413 \,2^{\frac{1}{3}} 3^{\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{110}\right) \left(8 \,2^{\frac{2}{3}} \left(\mathrm{I} \,3^{\frac{5}{6}}-3^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+2 \,2^{\frac{1}{3}} \left(\sqrt{59}\, 3^{\frac{1}{6}}-3 \,3^{\frac{2}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}+\left(-12 \,\mathrm{I}-4 \sqrt{3}\right) \sqrt{59}+36 \,\mathrm{I} \sqrt{3}+36\right)^{-n}}{1416}+\left(\frac{\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}-\frac{3^{\frac{5}{6}} \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}+\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(-\frac{3 \sqrt{3}\, \left(\frac{55 \sqrt{59}}{531}+\mathrm{I}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{16}-\frac{7 \left(\frac{3 \sqrt{59}}{413}+\mathrm{I}\right) \sqrt{3}\, \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{3 \,2^{\frac{1}{3}} 3^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}+\frac{413}{9}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{1888}+\frac{55 \left(\frac{177}{55}+\mathrm{I} \sqrt{59}\right) 2^{\frac{2}{3}} 3^{\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{944}+2^{-n} \left(\frac{8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-8 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-\mathrm{I} \sqrt{59}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{-8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}\right)^{n}+1\right)\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+3^{\frac{1}{6}} 2^{\frac{1}{3}} \sqrt{59}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}}}{24}\)

This specification was found using the strategy pack "Point Placements" and has 101 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 101 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{33}\! \left(x \right) &= 0\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{38}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{51}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{55}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{38}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{51}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{12}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{12}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{12}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{78}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{47}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{84}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= 2 F_{33}\! \left(x \right)+F_{89}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{12}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{12}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{12}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{96}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{77}\! \left(x \right)\\ \end{align*}\)