Av(1243, 1324, 1342, 1423, 2431)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(-x^{4}+3 x^{3}-2 x +1\right) \sqrt{1-4 x}+5 x^{4}-7 x^{3}+2 x^{2}+2 x -1}{2 x \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 60, 190, 611, 2007, 6734, 23019, 79917, 281024, 998742, 3581273, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{6} F \left(x \right)^{2}-\left(5 x^{4}-7 x^{3}+2 x^{2}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{8}-7 x^{6}+19 x^{5}-17 x^{4}+x^{3}+8 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 190\)
\(\displaystyle a \! \left(7\right) = 611\)
\(\displaystyle a \! \left(8\right) = 2007\)
\(\displaystyle a \! \left(n +6\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +7}-\frac{\left(9+17 n \right) a \! \left(n +1\right)}{n +7}+\frac{2 \left(1+8 n \right) a \! \left(n +2\right)}{n +7}+\frac{\left(41+5 n \right) a \! \left(n +3\right)}{n +7}-\frac{2 \left(36+7 n \right) a \! \left(n +4\right)}{n +7}+\frac{\left(41+7 n \right) a \! \left(n +5\right)}{n +7}+\frac{2 n -6}{n +7}, \quad n \geq 9\)

This specification was found using the strategy pack "Point Placements" and has 22 rules.

Found on July 23, 2021.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 22 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{5} \left(x \right)^{2} F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= x\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17} \left(x \right)^{2}\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{17}\! \left(x \right) F_{5}\! \left(x \right) F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\ \end{align*}\)