Av(1243, 1324, 1342, 1423, 1432, 2143, 2413, 2431, 3142, 4132, 4231)
Generating Function
\(\displaystyle \frac{4 x^{6}-8 x^{5}+5 x^{4}-5 x^{2}+4 x -1}{\left(x -1\right) \left(2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 13, 33, 81, 193, 449, 1025, 2305, 5121, 11265, 24577, 53249, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+4 x^{6}-8 x^{5}+5 x^{4}-5 x^{2}+4 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 33\)
\(\displaystyle a \! \left(6\right) = 81\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)+1, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 33\)
\(\displaystyle a \! \left(6\right) = 81\)
\(\displaystyle a \! \left(n +2\right) = -4 a \! \left(n \right)+4 a \! \left(n +1\right)+1, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 6 & n =3 \\ 1+\frac{\left(n -1\right) 2^{n}}{4} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 36 rules.
Found on July 23, 2021.Finding the specification took 2 seconds.
Copy 36 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{16}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{16}\! \left(x \right) F_{29}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right) F_{29}\! \left(x \right) F_{8}\! \left(x \right)\\
\end{align*}\)