Av(12435, 12453, 12543, 15243, 21435, 21453, 21543, 24135, 24153, 24315)
Counting Sequence
1, 1, 2, 6, 24, 110, 530, 2595, 12759, 62749, 308312, 1513071, 7417254, 36325576, 177763806, ...
This specification was found using the strategy pack "Point Placements Req Corrob" and has 596 rules.
Finding the specification took 24284 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 596 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= 4 x F_{6} \left(x \right)^{2}+x^{2}-F_{6} \left(x \right)^{2}+F_{6}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{24}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{545}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{526}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{0}\! \left(x \right)}\\
F_{17}\! \left(x \right) &= -F_{524}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{476}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 4 F_{21} \left(x \right)^{2} x +x^{2}-8 F_{21}\! \left(x \right) x -F_{21} \left(x \right)^{2}+4 x +3 F_{21}\! \left(x \right)-1\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{24}\! \left(x \right) &= x\\
F_{25}\! \left(x \right) &= \frac{F_{26}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{24}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{24}\! \left(x \right) F_{33}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38} \left(x \right)^{2} F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{24}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{24}\! \left(x \right) F_{38}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{24}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= \frac{F_{53}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{53}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{0}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{24}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{6}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= \frac{F_{62}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{62}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{210}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= -F_{67}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= \frac{F_{66}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{66}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= -F_{74}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= \frac{F_{73}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{73}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{24}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{24}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{38}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{38}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{0}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{24}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{24}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{39}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{35}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= -F_{98}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= \frac{F_{97}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{97}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{141}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{103}\! \left(x \right) &= -F_{104}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{104}\! \left(x \right) &= -F_{106}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= -F_{95}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{111}\! \left(x \right) &= \frac{F_{112}\! \left(x \right)}{F_{24}\! \left(x \right) F_{44}\! \left(x \right)}\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{114}\! \left(x \right) &= \frac{F_{115}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{117}\! \left(x \right) &= \frac{F_{118}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{118}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{44} \left(x \right)^{2} F_{122}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{122}\! \left(x \right) &= \frac{F_{123}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{125}\! \left(x \right) &= -F_{128}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= \frac{F_{127}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{127}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{38}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{131}\! \left(x \right) &= -F_{136}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= \frac{F_{133}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{103}\! \left(x \right) F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{104}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{162}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{143}\! \left(x \right) &= \frac{F_{144}\! \left(x \right)}{F_{157}\! \left(x \right)}\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= -F_{155}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{146}\! \left(x \right) &= \frac{F_{147}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= -F_{70}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{153}\! \left(x \right) &= \frac{F_{154}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{154}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{38} \left(x \right)^{2} F_{117}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{160}\! \left(x \right) &= \frac{F_{161}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{161}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{162}\! \left(x \right) &= \frac{F_{163}\! \left(x \right)}{F_{24}\! \left(x \right) F_{38}\! \left(x \right)}\\
F_{163}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{38}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{171}\! \left(x \right) &= \frac{F_{172}\! \left(x \right)}{F_{24}\! \left(x \right) F_{38}\! \left(x \right)}\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\
F_{173}\! \left(x \right) &= -F_{177}\! \left(x \right)+F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= -F_{105}\! \left(x \right)+F_{175}\! \left(x \right)\\
F_{175}\! \left(x \right) &= \frac{F_{176}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{176}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{177}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{182}\! \left(x \right) &= \frac{F_{183}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{183}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{184}\! \left(x \right) &= -F_{187}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= \frac{F_{186}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{186}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{38}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{190}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{103}\! \left(x \right) F_{24}\! \left(x \right) F_{35}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{114}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{196}\! \left(x \right) &= -F_{82}\! \left(x \right)+F_{197}\! \left(x \right)\\
F_{197}\! \left(x \right) &= \frac{F_{198}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{470}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{206}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{16}\! \left(x \right) F_{205}\! \left(x \right)\\
F_{205}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{122}\! \left(x \right) F_{208}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{208}\! \left(x \right) &= \frac{F_{209}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= -F_{468}\! \left(x \right)+F_{211}\! \left(x \right)\\
F_{211}\! \left(x \right) &= -F_{215}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{212}\! \left(x \right) &= \frac{F_{213}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{214}\! \left(x \right) &= -F_{6}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{450}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{219}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{218}\! \left(x \right) &= 4 F_{218} \left(x \right)^{2} x +x^{2}-8 F_{218}\! \left(x \right) x -F_{218} \left(x \right)^{2}+4 x +3 F_{218}\! \left(x \right)-1\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{447}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{223}\! \left(x \right) &= -F_{224}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{224}\! \left(x \right) &= -F_{445}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{222}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{444}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{230}\! \left(x \right) &= -F_{231}\! \left(x \right)+F_{226}\! \left(x \right)\\
F_{231}\! \left(x \right) &= -F_{232}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{442}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= -F_{235}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{239}\! \left(x \right)\\
F_{236}\! \left(x \right) &= -F_{237}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{45}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{239}\! \left(x \right) &= -F_{345}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{344}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{24}\! \left(x \right) F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)+F_{316}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{262}\! \left(x \right)\\
F_{245}\! \left(x \right) &= \frac{F_{246}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{249}\! \left(x \right)\\
F_{248}\! \left(x \right) &= 4 x F_{248} \left(x \right)^{2}+x^{2}-F_{248} \left(x \right)^{2}+F_{248}\! \left(x \right)\\
F_{249}\! \left(x \right) &= \frac{F_{250}\! \left(x \right)}{F_{262}\! \left(x \right)}\\
F_{250}\! \left(x \right) &= -F_{315}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{296}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{253}\! \left(x \right) &= \frac{F_{254}\! \left(x \right)}{F_{45}\! \left(x \right)}\\
F_{254}\! \left(x \right) &= -F_{260}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= \frac{F_{256}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{24}\! \left(x \right) F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{241}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{264}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{247}\! \left(x \right) F_{262}\! \left(x \right)\\
F_{262}\! \left(x \right) &= \frac{F_{263}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45} \left(x \right)^{2}}\\
F_{263}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{248}\! \left(x \right) F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= \frac{F_{267}\! \left(x \right)}{F_{44}\! \left(x \right)}\\
F_{267}\! \left(x \right) &= -F_{293}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{268}\! \left(x \right) &= \frac{F_{269}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{279}\! \left(x \right)\\
F_{271}\! \left(x \right) &= -F_{276}\! \left(x \right)+F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{24}\! \left(x \right) F_{262}\! \left(x \right) F_{274}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{274}\! \left(x \right) &= \frac{F_{275}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{275}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{139}\! \left(x \right) F_{277}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{160}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{279}\! \left(x \right) &= -F_{280}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)\\
F_{281}\! \left(x \right) &= -F_{289}\! \left(x \right)+F_{282}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)+F_{288}\! \left(x \right)\\
F_{283}\! \left(x \right) &= F_{284}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)\\
F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{24}\! \left(x \right) F_{282}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{36}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{289}\! \left(x \right) &= -F_{292}\! \left(x \right)+F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= \frac{F_{291}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{291}\! \left(x \right) &= F_{286}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{284}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{262}\! \left(x \right) F_{294}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{294}\! \left(x \right) &= \frac{F_{295}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{295}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{296}\! \left(x \right) &= -F_{313}\! \left(x \right)+F_{297}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{24}\! \left(x \right) F_{299}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{300}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{262}\! \left(x \right) F_{301}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{311}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{305}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{308}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{307}\! \left(x \right) &= 0\\
F_{308}\! \left(x \right) &= F_{24}\! \left(x \right) F_{309}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{306}\! \left(x \right)\\
F_{310}\! \left(x \right) &= F_{24}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{312}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{312}\! \left(x \right) &= 32 x^{4} F_{312} \left(x \right)^{2}-32 \sqrt{1-4 x}\, x^{3} F_{312}\! \left(x \right)+8 x^{5}-64 x^{4} F_{312}\! \left(x \right)-8 x^{3} F_{312} \left(x \right)^{2}+32 \sqrt{1-4 x}\, x^{3}+8 \sqrt{1-4 x}\, x^{2} F_{312}\! \left(x \right)+32 x^{4}+48 x^{3} F_{312}\! \left(x \right)-24 \sqrt{1-4 x}\, x^{2}-72 x^{3}-8 x^{2} F_{312}\! \left(x \right)+4 \sqrt{1-4 x}\, x +32 x^{2}-4 x +F_{312}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{314}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{262}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{252}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{266}\! \left(x \right) F_{317}\! \left(x \right)\\
F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{323}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{319}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{24}\! \left(x \right) F_{321}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{322}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{323}\! \left(x \right) &= \frac{F_{324}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{324}\! \left(x \right) &= -F_{342}\! \left(x \right)+F_{325}\! \left(x \right)\\
F_{325}\! \left(x \right) &= -F_{326}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{326}\! \left(x \right) &= -F_{333}\! \left(x \right)+F_{327}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{24}\! \left(x \right) F_{331}\! \left(x \right)\\
F_{331}\! \left(x \right) &= \frac{F_{332}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{332}\! \left(x \right) &= F_{215}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)+F_{337}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{336}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{24}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{24}\! \left(x \right) F_{339}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{341}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{24}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{24}\! \left(x \right) F_{319}\! \left(x \right)\\
F_{344}\! \left(x \right) &= -F_{31}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{345}\! \left(x \right) &= F_{346}\! \left(x \right)\\
F_{346}\! \left(x \right) &= F_{24}\! \left(x \right) F_{347}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{347}\! \left(x \right) &= \frac{F_{348}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)\\
F_{349}\! \left(x \right) &= -F_{360}\! \left(x \right)+F_{350}\! \left(x \right)\\
F_{350}\! \left(x \right) &= \frac{F_{351}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)\\
F_{352}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{353}\! \left(x \right)\\
F_{353}\! \left(x \right) &= -F_{356}\! \left(x \right)+F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= \frac{F_{355}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{355}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{356}\! \left(x \right) &= F_{157}\! \left(x \right) F_{319}\! \left(x \right)\\
F_{357}\! \left(x \right) &= F_{358}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{359}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{360}\! \left(x \right) &= F_{361}\! \left(x \right)\\
F_{361}\! \left(x \right) &= F_{362}\! \left(x \right)+F_{371}\! \left(x \right)\\
F_{362}\! \left(x \right) &= F_{363}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{364}\! \left(x \right)\\
F_{364}\! \left(x \right) &= F_{24}\! \left(x \right) F_{365}\! \left(x \right)\\
F_{365}\! \left(x \right) &= \frac{F_{366}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{366}\! \left(x \right) &= F_{367}\! \left(x \right)\\
F_{367}\! \left(x \right) &= F_{24}\! \left(x \right) F_{368}\! \left(x \right)\\
F_{368}\! \left(x \right) &= F_{369}\! \left(x \right)+F_{370}\! \left(x \right)\\
F_{369}\! \left(x \right) &= F_{314}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{370}\! \left(x \right) &= F_{262}\! \left(x \right) F_{309}\! \left(x \right)\\
F_{371}\! \left(x \right) &= F_{372}\! \left(x \right) F_{374}\! \left(x \right)\\
F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)\\
F_{373}\! \left(x \right) &= F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{374}\! \left(x \right) &= F_{375}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{24}\! \left(x \right) F_{376}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{377}\! \left(x \right)+F_{379}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{378}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{303}\! \left(x \right) F_{38}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{380}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{380}\! \left(x \right) &= \frac{F_{381}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{381}\! \left(x \right) &= -F_{439}\! \left(x \right)+F_{382}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)+F_{437}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{384}\! \left(x \right)\\
F_{384}\! \left(x \right) &= F_{24}\! \left(x \right) F_{385}\! \left(x \right)\\
F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)+F_{396}\! \left(x \right)\\
F_{386}\! \left(x \right) &= -F_{394}\! \left(x \right)+F_{387}\! \left(x \right)\\
F_{387}\! \left(x \right) &= \frac{F_{388}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\
F_{389}\! \left(x \right) &= -F_{392}\! \left(x \right)+F_{390}\! \left(x \right)\\
F_{390}\! \left(x \right) &= \frac{F_{391}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{391}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{392}\! \left(x \right) &= \frac{F_{393}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{393}\! \left(x \right) &= F_{357}\! \left(x \right)\\
F_{394}\! \left(x \right) &= F_{395}\! \left(x \right)\\
F_{395}\! \left(x \right) &= F_{157}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{396}\! \left(x \right) &= -F_{419}\! \left(x \right)+F_{397}\! \left(x \right)\\
F_{397}\! \left(x \right) &= \frac{F_{398}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{398}\! \left(x \right) &= F_{399}\! \left(x \right)\\
F_{399}\! \left(x \right) &= F_{24}\! \left(x \right) F_{400}\! \left(x \right)\\
F_{400}\! \left(x \right) &= -F_{417}\! \left(x \right)+F_{401}\! \left(x \right)\\
F_{401}\! \left(x \right) &= \frac{F_{402}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{402}\! \left(x \right) &= F_{403}\! \left(x \right)\\
F_{403}\! \left(x \right) &= -F_{406}\! \left(x \right)+F_{404}\! \left(x \right)\\
F_{404}\! \left(x \right) &= \frac{F_{405}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{405}\! \left(x \right) &= F_{211}\! \left(x \right)\\
F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)\\
F_{407}\! \left(x \right) &= F_{408}\! \left(x \right)+F_{416}\! \left(x \right)\\
F_{408}\! \left(x \right) &= -F_{411}\! \left(x \right)+F_{409}\! \left(x \right)\\
F_{409}\! \left(x \right) &= \frac{F_{410}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{410}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{411}\! \left(x \right) &= -F_{414}\! \left(x \right)+F_{412}\! \left(x \right)\\
F_{412}\! \left(x \right) &= \frac{F_{413}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{413}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{414}\! \left(x \right) &= F_{415}\! \left(x \right)\\
F_{415}\! \left(x \right) &= F_{24}\! \left(x \right) F_{407}\! \left(x \right)\\
F_{416}\! \left(x \right) &= F_{38}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{417}\! \left(x \right) &= F_{418}\! \left(x \right)\\
F_{418}\! \left(x \right) &= F_{157}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{419}\! \left(x \right) &= -F_{417}\! \left(x \right)+F_{420}\! \left(x \right)\\
F_{420}\! \left(x \right) &= \frac{F_{421}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{421}\! \left(x \right) &= F_{422}\! \left(x \right)\\
F_{422}\! \left(x \right) &= F_{344}\! \left(x \right)+F_{423}\! \left(x \right)\\
F_{423}\! \left(x \right) &= -F_{424}\! \left(x \right)+F_{270}\! \left(x \right)\\
F_{424}\! \left(x \right) &= -F_{432}\! \left(x \right)+F_{425}\! \left(x \right)\\
F_{425}\! \left(x \right) &= F_{426}\! \left(x \right)\\
F_{426}\! \left(x \right) &= F_{24}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{427}\! \left(x \right) &= \frac{F_{428}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)\\
F_{429}\! \left(x \right) &= \frac{F_{430}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{430}\! \left(x \right) &= F_{431}\! \left(x \right)\\
F_{431}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{432}\! \left(x \right) &= F_{433}\! \left(x \right)\\
F_{433}\! \left(x \right) &= -F_{35}\! \left(x \right)+F_{434}\! \left(x \right)\\
F_{434}\! \left(x \right) &= F_{435}\! \left(x \right)+F_{436}\! \left(x \right)\\
F_{435}\! \left(x \right) &= F_{35}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{436}\! \left(x \right) &= F_{35}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)\\
F_{438}\! \left(x \right) &= F_{157}\! \left(x \right) F_{24}\! \left(x \right) F_{248}\! \left(x \right)\\
F_{439}\! \left(x \right) &= F_{437}\! \left(x \right)+F_{440}\! \left(x \right)\\
F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\
F_{441}\! \left(x \right) &= F_{24}\! \left(x \right) F_{386}\! \left(x \right)\\
F_{442}\! \left(x \right) &= F_{443}\! \left(x \right)+F_{444}\! \left(x \right)\\
F_{443}\! \left(x \right) &= F_{16}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{444}\! \left(x \right) &= -F_{222}\! \left(x \right)+F_{425}\! \left(x \right)\\
F_{445}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{446}\! \left(x \right)\\
F_{446}\! \left(x \right) &= F_{160}\! \left(x \right)\\
F_{447}\! \left(x \right) &= F_{448}\! \left(x \right)+F_{449}\! \left(x \right)\\
F_{448}\! \left(x \right) &= F_{223}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{449}\! \left(x \right) &= F_{224}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{450}\! \left(x \right) &= -F_{467}\! \left(x \right)+F_{451}\! \left(x \right)\\
F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)\\
F_{452}\! \left(x \right) &= F_{24}\! \left(x \right) F_{453}\! \left(x \right)\\
F_{453}\! \left(x \right) &= \frac{F_{454}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{454}\! \left(x \right) &= F_{455}\! \left(x \right)\\
F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)+F_{458}\! \left(x \right)\\
F_{456}\! \left(x \right) &= F_{218}\! \left(x \right) F_{457}\! \left(x \right)\\
F_{457}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{458}\! \left(x \right) &= F_{459}\! \left(x \right)\\
F_{459}\! \left(x \right) &= F_{24}\! \left(x \right) F_{460}\! \left(x \right)\\
F_{460}\! \left(x \right) &= F_{461}\! \left(x \right)+F_{464}\! \left(x \right)\\
F_{461}\! \left(x \right) &= F_{462}\! \left(x \right)+F_{463}\! \left(x \right)\\
F_{462}\! \left(x \right) &= F_{177}\! \left(x \right) F_{208}\! \left(x \right)\\
F_{463}\! \left(x \right) &= F_{173}\! \left(x \right) F_{223}\! \left(x \right)\\
F_{464}\! \left(x \right) &= F_{465}\! \left(x \right)+F_{466}\! \left(x \right)\\
F_{465}\! \left(x \right) &= F_{104}\! \left(x \right) F_{234}\! \left(x \right)\\
F_{466}\! \left(x \right) &= F_{106}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{467}\! \left(x \right) &= F_{457}\! \left(x \right)+F_{468}\! \left(x \right)\\
F_{468}\! \left(x \right) &= F_{469}\! \left(x \right)\\
F_{469}\! \left(x \right) &= F_{228}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{470}\! \left(x \right) &= F_{471}\! \left(x \right)\\
F_{471}\! \left(x \right) &= F_{472}\! \left(x \right)+F_{487}\! \left(x \right)\\
F_{472}\! \left(x \right) &= F_{473}\! \left(x \right)\\
F_{473}\! \left(x \right) &= -F_{480}\! \left(x \right)+F_{474}\! \left(x \right)\\
F_{474}\! \left(x \right) &= \frac{F_{475}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{475}\! \left(x \right) &= F_{476}\! \left(x \right)\\
F_{476}\! \left(x \right) &= F_{477}\! \left(x \right)\\
F_{477}\! \left(x \right) &= F_{24}\! \left(x \right) F_{478}\! \left(x \right)\\
F_{478}\! \left(x \right) &= \frac{F_{479}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{479}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{480}\! \left(x \right) &= -F_{481}\! \left(x \right)+F_{478}\! \left(x \right)\\
F_{481}\! \left(x \right) &= F_{482}\! \left(x \right)\\
F_{482}\! \left(x \right) &= F_{24}\! \left(x \right) F_{483}\! \left(x \right)\\
F_{483}\! \left(x \right) &= F_{484}\! \left(x \right)+F_{485}\! \left(x \right)\\
F_{484}\! \left(x \right) &= F_{38}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{485}\! \left(x \right) &= F_{486}\! \left(x \right)\\
F_{486}\! \left(x \right) &= F_{184}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)+F_{500}\! \left(x \right)\\
F_{488}\! \left(x \right) &= F_{489}\! \left(x \right)\\
F_{489}\! \left(x \right) &= F_{38}\! \left(x \right) F_{490}\! \left(x \right)\\
F_{490}\! \left(x \right) &= -F_{497}\! \left(x \right)+F_{491}\! \left(x \right)\\
F_{491}\! \left(x \right) &= F_{492}\! \left(x \right)+F_{493}\! \left(x \right)\\
F_{492}\! \left(x \right) &= -F_{205}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{493}\! \left(x \right) &= F_{494}\! \left(x \right)\\
F_{494}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{495}\! \left(x \right)\\
F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)\\
F_{496}\! \left(x \right) &= F_{131}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{497}\! \left(x \right) &= F_{498}\! \left(x \right)\\
F_{498}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{499}\! \left(x \right)\\
F_{499}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{500}\! \left(x \right) &= F_{501}\! \left(x \right)\\
F_{501}\! \left(x \right) &= -F_{522}\! \left(x \right)+F_{502}\! \left(x \right)\\
F_{502}\! \left(x \right) &= -F_{515}\! \left(x \right)+F_{503}\! \left(x \right)\\
F_{503}\! \left(x \right) &= F_{504}\! \left(x \right)\\
F_{504}\! \left(x \right) &= -F_{507}\! \left(x \right)+F_{505}\! \left(x \right)\\
F_{505}\! \left(x \right) &= \frac{F_{506}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{506}\! \left(x \right) &= F_{498}\! \left(x \right)\\
F_{507}\! \left(x \right) &= F_{508}\! \left(x \right)\\
F_{508}\! \left(x \right) &= F_{509}\! \left(x \right)+F_{511}\! \left(x \right)\\
F_{509}\! \left(x \right) &= F_{510}\! \left(x \right)\\
F_{510}\! \left(x \right) &= F_{103}\! \left(x \right) F_{24}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{511}\! \left(x \right) &= F_{512}\! \left(x \right)+F_{514}\! \left(x \right)\\
F_{512}\! \left(x \right) &= F_{513}\! \left(x \right)\\
F_{513}\! \left(x \right) &= F_{122}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{514}\! \left(x \right) &= F_{38}\! \left(x \right) F_{494}\! \left(x \right)\\
F_{515}\! \left(x \right) &= -F_{522}\! \left(x \right)+F_{516}\! \left(x \right)\\
F_{516}\! \left(x \right) &= \frac{F_{517}\! \left(x \right)}{F_{38}\! \left(x \right)}\\
F_{517}\! \left(x \right) &= F_{518}\! \left(x \right)\\
F_{518}\! \left(x \right) &= -F_{521}\! \left(x \right)+F_{519}\! \left(x \right)\\
F_{519}\! \left(x \right) &= \frac{F_{520}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{520}\! \left(x \right) &= F_{498}\! \left(x \right)\\
F_{521}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{522}\! \left(x \right) &= F_{523}\! \left(x \right)\\
F_{523}\! \left(x \right) &= F_{122}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{524}\! \left(x \right) &= F_{525}\! \left(x \right)+F_{526}\! \left(x \right)\\
F_{525}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{277}\! \left(x \right)\\
F_{526}\! \left(x \right) &= F_{527}\! \left(x \right)\\
F_{527}\! \left(x \right) &= F_{24}\! \left(x \right) F_{528}\! \left(x \right)\\
F_{528}\! \left(x \right) &= F_{529}\! \left(x \right)+F_{538}\! \left(x \right)\\
F_{529}\! \left(x \right) &= F_{447}\! \left(x \right)+F_{530}\! \left(x \right)\\
F_{530}\! \left(x \right) &= F_{531}\! \left(x \right)+F_{532}\! \left(x \right)\\
F_{531}\! \left(x \right) &= F_{234}\! \left(x \right) F_{24}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{532}\! \left(x \right) &= F_{16}\! \left(x \right) F_{533}\! \left(x \right)\\
F_{533}\! \left(x \right) &= -F_{537}\! \left(x \right)+F_{534}\! \left(x \right)\\
F_{534}\! \left(x \right) &= F_{535}\! \left(x \right)\\
F_{535}\! \left(x \right) &= F_{24}\! \left(x \right) F_{536}\! \left(x \right)\\
F_{536}\! \left(x \right) &= F_{284}\! \left(x \right)\\
F_{537}\! \left(x \right) &= F_{24}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{538}\! \left(x \right) &= -F_{539}\! \left(x \right)+F_{460}\! \left(x \right)\\
F_{539}\! \left(x \right) &= F_{540}\! \left(x \right)+F_{542}\! \left(x \right)\\
F_{540}\! \left(x \right) &= F_{234}\! \left(x \right) F_{541}\! \left(x \right)\\
F_{541}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{537}\! \left(x \right)\\
F_{542}\! \left(x \right) &= F_{16}\! \left(x \right) F_{543}\! \left(x \right)\\
F_{543}\! \left(x \right) &= -F_{541}\! \left(x \right)+F_{544}\! \left(x \right)\\
F_{544}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{534}\! \left(x \right)\\
F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)\\
F_{546}\! \left(x \right) &= F_{24}\! \left(x \right) F_{547}\! \left(x \right)\\
F_{547}\! \left(x \right) &= F_{548}\! \left(x \right)+F_{550}\! \left(x \right)\\
F_{548}\! \left(x \right) &= \frac{F_{549}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{549}\! \left(x \right) &= F_{544}\! \left(x \right)\\
F_{550}\! \left(x \right) &= F_{551}\! \left(x \right)+F_{595}\! \left(x \right)\\
F_{551}\! \left(x \right) &= F_{552}\! \left(x \right)\\
F_{552}\! \left(x \right) &= F_{24}\! \left(x \right) F_{553}\! \left(x \right)\\
F_{553}\! \left(x \right) &= F_{554}\! \left(x \right)+F_{593}\! \left(x \right)\\
F_{554}\! \left(x \right) &= \frac{F_{555}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{555}\! \left(x \right) &= F_{556}\! \left(x \right)\\
F_{556}\! \left(x \right) &= F_{536}\! \left(x \right)+F_{557}\! \left(x \right)\\
F_{557}\! \left(x \right) &= -F_{567}\! \left(x \right)+F_{558}\! \left(x \right)\\
F_{558}\! \left(x \right) &= -F_{562}\! \left(x \right)+F_{559}\! \left(x \right)\\
F_{559}\! \left(x \right) &= \frac{F_{560}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{560}\! \left(x \right) &= F_{561}\! \left(x \right)\\
F_{561}\! \left(x \right) &= -F_{336}\! \left(x \right)+F_{468}\! \left(x \right)\\
F_{562}\! \left(x \right) &= F_{563}\! \left(x \right)\\
F_{563}\! \left(x \right) &= F_{24}\! \left(x \right) F_{39}\! \left(x \right) F_{564}\! \left(x \right)\\
F_{564}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{565}\! \left(x \right)\\
F_{565}\! \left(x \right) &= F_{566}\! \left(x \right)\\
F_{566}\! \left(x \right) &= F_{24}\! \left(x \right) F_{38}\! \left(x \right) F_{45}\! \left(x \right) F_{564}\! \left(x \right)\\
F_{567}\! \left(x \right) &= F_{568}\! \left(x \right)\\
F_{568}\! \left(x \right) &= F_{24}\! \left(x \right) F_{38}\! \left(x \right) F_{569}\! \left(x \right)\\
F_{569}\! \left(x \right) &= F_{570}\! \left(x \right)\\
F_{570}\! \left(x \right) &= F_{24}\! \left(x \right) F_{571}\! \left(x \right)\\
F_{571}\! \left(x \right) &= -F_{591}\! \left(x \right)+F_{572}\! \left(x \right)\\
F_{572}\! \left(x \right) &= \frac{F_{573}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{573}\! \left(x \right) &= F_{574}\! \left(x \right)\\
F_{574}\! \left(x \right) &= -F_{577}\! \left(x \right)+F_{575}\! \left(x \right)\\
F_{575}\! \left(x \right) &= \frac{F_{576}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{576}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{577}\! \left(x \right) &= -F_{578}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{578}\! \left(x \right) &= -F_{581}\! \left(x \right)+F_{579}\! \left(x \right)\\
F_{579}\! \left(x \right) &= \frac{F_{580}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{580}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{581}\! \left(x \right) &= F_{582}\! \left(x \right)\\
F_{582}\! \left(x \right) &= F_{24}\! \left(x \right) F_{583}\! \left(x \right)\\
F_{583}\! \left(x \right) &= F_{584}\! \left(x \right)+F_{589}\! \left(x \right)\\
F_{584}\! \left(x \right) &= \frac{F_{585}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{585}\! \left(x \right) &= F_{586}\! \left(x \right)\\
F_{586}\! \left(x \right) &= -F_{285}\! \left(x \right)+F_{587}\! \left(x \right)\\
F_{587}\! \left(x \right) &= \frac{F_{588}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{588}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{589}\! \left(x \right) &= F_{590}\! \left(x \right)\\
F_{590}\! \left(x \right) &= F_{564}\! \left(x \right) F_{574}\! \left(x \right)\\
F_{591}\! \left(x \right) &= F_{592}\! \left(x \right)\\
F_{592}\! \left(x \right) &= F_{162} \left(x \right)^{2} F_{24}\! \left(x \right)\\
F_{593}\! \left(x \right) &= F_{594}\! \left(x \right)\\
F_{594}\! \left(x \right) &= F_{38}\! \left(x \right) F_{569}\! \left(x \right)\\
F_{595}\! \left(x \right) &= -F_{423}\! \left(x \right)+F_{241}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 632 rules.
Finding the specification took 78359 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 632 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{5}\! \left(x \right) &= 4 F_{5} \left(x \right)^{2} x +x^{2}-8 F_{5}\! \left(x \right) x -F_{5} \left(x \right)^{2}+4 x +3 F_{5}\! \left(x \right)-1\\
F_{6}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{31}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{577}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{558}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{0}\! \left(x \right)}\\
F_{17}\! \left(x \right) &= -F_{556}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 4 x F_{22} \left(x \right)^{2}+x^{2}-F_{22} \left(x \right)^{2}+F_{22}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{31}\! \left(x \right) &= x\\
F_{32}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{31}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{25}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{42}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= -F_{49}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= \frac{F_{48}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{48}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{53}\! \left(x \right) &= 4 x F_{53} \left(x \right)^{2}+x^{2}-F_{53} \left(x \right)^{2}+F_{53}\! \left(x \right)\\
F_{54}\! \left(x \right) &= -F_{57}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= \frac{F_{56}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{56}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{541}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{514}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{28}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= -F_{153}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= -F_{66}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= \frac{F_{65}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{65}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= -F_{73}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= \frac{F_{72}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{72}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{498}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{0}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{31}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{50}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{63}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= -F_{496}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= -F_{89}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= \frac{F_{84}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= \frac{F_{88}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{88}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{477}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{5}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{31}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{474}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{29}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= -F_{99}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= \frac{F_{98}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{98}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{99}\! \left(x \right) &= -F_{471}\! \left(x \right)+F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{104}\! \left(x \right) &= -F_{106}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{95}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{106}\! \left(x \right) &= -F_{281}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{110}\! \left(x \right) &= \frac{F_{111}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{112}\! \left(x \right) &= \frac{F_{113}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\
F_{114}\! \left(x \right) &= -F_{119}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{117}\! \left(x \right) &= \frac{F_{118}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{118}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{280}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{275}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{272}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{126}\! \left(x \right) &= \frac{F_{127}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= \frac{F_{129}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{129}\! \left(x \right) &= -F_{270}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{132}\! \left(x \right) &= \frac{F_{133}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{31}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{138}\! \left(x \right) &= \frac{F_{139}\! \left(x \right)}{F_{269}\! \left(x \right)}\\
F_{139}\! \left(x \right) &= -F_{261}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{141}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{141}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{31}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{150}\! \left(x \right) &= \frac{F_{151}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= -F_{154}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{159}\! \left(x \right) &= \frac{F_{160}\! \left(x \right)}{F_{31}\! \left(x \right) F_{43}\! \left(x \right)}\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{167}\! \left(x \right)\\
F_{162}\! \left(x \right) &= \frac{F_{163}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right) F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{165}\! \left(x \right) &= \frac{F_{166}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{166}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{43} \left(x \right)^{2} F_{150}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{170}\! \left(x \right) &= -F_{173}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{171}\! \left(x \right) &= \frac{F_{172}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{172}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{176}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{28}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{176}\! \left(x \right) &= -F_{181}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= \frac{F_{178}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{184}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{184}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{153}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{218}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\
F_{189}\! \left(x \right) &= -F_{197}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{190}\! \left(x \right) &= \frac{F_{191}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{194}\! \left(x \right) &= \frac{F_{195}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{196}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{197}\! \left(x \right) &= -F_{198}\! \left(x \right)+F_{194}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{216}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{206}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{0}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{211}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{29}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{42}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{212}\! \left(x \right) &= -F_{215}\! \left(x \right)+F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= \frac{F_{214}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{214}\! \left(x \right) &= F_{207}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{206}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{212}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{232}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{221}\! \left(x \right) &= -F_{229}\! \left(x \right)+F_{222}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{223}\! \left(x \right) &= -F_{141}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{224}\! \left(x \right) &= -F_{204}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)\\
F_{226}\! \left(x \right) &= -F_{152}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{176}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= -F_{152}\! \left(x \right)+F_{231}\! \left(x \right)\\
F_{231}\! \left(x \right) &= -F_{206}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= -F_{148}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{259}\! \left(x \right)\\
F_{235}\! \left(x \right) &= -F_{248}\! \left(x \right)+F_{236}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\
F_{237}\! \left(x \right) &= -F_{240}\! \left(x \right)+F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= \frac{F_{239}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{239}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{244}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{31}\! \left(x \right) F_{42}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{150}\! \left(x \right) F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{226}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{248}\! \left(x \right) &= -F_{257}\! \left(x \right)+F_{249}\! \left(x \right)\\
F_{249}\! \left(x \right) &= \frac{F_{250}\! \left(x \right)}{F_{28}\! \left(x \right)}\\
F_{250}\! \left(x \right) &= -F_{253}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{251}\! \left(x \right) &= \frac{F_{252}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{252}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{31}\! \left(x \right) F_{42}\! \left(x \right) F_{43}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{150}\! \left(x \right) F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\
F_{260}\! \left(x \right) &= -F_{257}\! \left(x \right)+F_{148}\! \left(x \right)\\
F_{261}\! \left(x \right) &= -F_{265}\! \left(x \right)+F_{262}\! \left(x \right)\\
F_{262}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= \frac{F_{264}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{264}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{265}\! \left(x \right) &= -F_{266}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{267}\! \left(x \right) &= 4 F_{267} \left(x \right)^{2} x +x^{2}-8 F_{267}\! \left(x \right) x -F_{267} \left(x \right)^{2}+4 x +3 F_{267}\! \left(x \right)-1\\
F_{268}\! \left(x \right) &= F_{269}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{272}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{275}\! \left(x \right) &= -F_{279}\! \left(x \right)+F_{276}\! \left(x \right)\\
F_{276}\! \left(x \right) &= \frac{F_{277}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{279}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{280}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{469}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= -F_{284}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{288}\! \left(x \right)\\
F_{285}\! \left(x \right) &= -F_{286}\! \left(x \right)+F_{279}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{272}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{288}\! \left(x \right) &= -F_{382}\! \left(x \right)+F_{289}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{381}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{291}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{365}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right) F_{310}\! \left(x \right)\\
F_{294}\! \left(x \right) &= \frac{F_{295}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{297}\! \left(x \right)\\
F_{297}\! \left(x \right) &= \frac{F_{298}\! \left(x \right)}{F_{310}\! \left(x \right)}\\
F_{298}\! \left(x \right) &= -F_{364}\! \left(x \right)+F_{299}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{346}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{273}\! \left(x \right) F_{301}\! \left(x \right)\\
F_{301}\! \left(x \right) &= \frac{F_{302}\! \left(x \right)}{F_{272}\! \left(x \right)}\\
F_{302}\! \left(x \right) &= -F_{308}\! \left(x \right)+F_{303}\! \left(x \right)\\
F_{303}\! \left(x \right) &= \frac{F_{304}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{307}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{309}\! \left(x \right)+F_{312}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{296}\! \left(x \right) F_{310}\! \left(x \right)\\
F_{310}\! \left(x \right) &= \frac{F_{311}\! \left(x \right)}{F_{272} \left(x \right)^{2} F_{31}\! \left(x \right)}\\
F_{311}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{22}\! \left(x \right) F_{314}\! \left(x \right)\\
F_{314}\! \left(x \right) &= \frac{F_{315}\! \left(x \right)}{F_{43}\! \left(x \right)}\\
F_{315}\! \left(x \right) &= -F_{343}\! \left(x \right)+F_{316}\! \left(x \right)\\
F_{316}\! \left(x \right) &= \frac{F_{317}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)+F_{327}\! \left(x \right)\\
F_{319}\! \left(x \right) &= -F_{324}\! \left(x \right)+F_{320}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{272}\! \left(x \right) F_{31}\! \left(x \right) F_{310}\! \left(x \right) F_{322}\! \left(x \right)\\
F_{322}\! \left(x \right) &= \frac{F_{323}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{323}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{324}\! \left(x \right) &= F_{184}\! \left(x \right) F_{325}\! \left(x \right)\\
F_{325}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{326}\! \left(x \right)\\
F_{326}\! \left(x \right) &= -F_{26}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{327}\! \left(x \right) &= -F_{330}\! \left(x \right)+F_{328}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{329}\! \left(x \right) &= -F_{95}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)\\
F_{331}\! \left(x \right) &= -F_{339}\! \left(x \right)+F_{332}\! \left(x \right)\\
F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{338}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{28}\! \left(x \right) F_{334}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{332}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{43}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{339}\! \left(x \right) &= -F_{342}\! \left(x \right)+F_{340}\! \left(x \right)\\
F_{340}\! \left(x \right) &= \frac{F_{341}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{341}\! \left(x \right) &= F_{336}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{28}\! \left(x \right) F_{334}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{272}\! \left(x \right) F_{310}\! \left(x \right) F_{344}\! \left(x \right)\\
F_{344}\! \left(x \right) &= \frac{F_{345}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{345}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{346}\! \left(x \right) &= -F_{362}\! \left(x \right)+F_{347}\! \left(x \right)\\
F_{347}\! \left(x \right) &= F_{348}\! \left(x \right)\\
F_{348}\! \left(x \right) &= F_{31}\! \left(x \right) F_{349}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{350}\! \left(x \right)\\
F_{350}\! \left(x \right) &= F_{310}\! \left(x \right) F_{351}\! \left(x \right)\\
F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)+F_{360}\! \left(x \right)\\
F_{352}\! \left(x \right) &= F_{28}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{353}\! \left(x \right) &= F_{269}\! \left(x \right)+F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{355}\! \left(x \right)\\
F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)+F_{357}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{356}\! \left(x \right) &= 0\\
F_{357}\! \left(x \right) &= F_{31}\! \left(x \right) F_{358}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{355}\! \left(x \right)\\
F_{359}\! \left(x \right) &= F_{273}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{360}\! \left(x \right) &= F_{272}\! \left(x \right) F_{361}\! \left(x \right)\\
F_{361}\! \left(x \right) &= 32 x^{4} F_{361} \left(x \right)^{2}-32 \sqrt{1-4 x}\, x^{3} F_{361}\! \left(x \right)+8 x^{5}-64 x^{4} F_{361}\! \left(x \right)-8 x^{3} F_{361} \left(x \right)^{2}+32 \sqrt{1-4 x}\, x^{3}+8 \sqrt{1-4 x}\, x^{2} F_{361}\! \left(x \right)+32 x^{4}+48 x^{3} F_{361}\! \left(x \right)-24 \sqrt{1-4 x}\, x^{2}-72 x^{3}-8 x^{2} F_{361}\! \left(x \right)+4 \sqrt{1-4 x}\, x +32 x^{2}-4 x +F_{361}\! \left(x \right)\\
F_{362}\! \left(x \right) &= F_{273}\! \left(x \right) F_{363}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{364}\! \left(x \right) &= F_{300}\! \left(x \right)\\
F_{365}\! \left(x \right) &= F_{314}\! \left(x \right) F_{366}\! \left(x \right)\\
F_{366}\! \left(x \right) &= -F_{373}\! \left(x \right)+F_{367}\! \left(x \right)\\
F_{367}\! \left(x \right) &= -F_{370}\! \left(x \right)+F_{368}\! \left(x \right)\\
F_{368}\! \left(x \right) &= \frac{F_{369}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{369}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{370}\! \left(x \right) &= -F_{373}\! \left(x \right)+F_{371}\! \left(x \right)\\
F_{371}\! \left(x \right) &= \frac{F_{372}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{372}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{373}\! \left(x \right) &= F_{374}\! \left(x \right)\\
F_{374}\! \left(x \right) &= F_{375}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{376}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{377}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{31}\! \left(x \right) F_{378}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)+F_{380}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{376}\! \left(x \right)\\
F_{380}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{381}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{272}\! \left(x \right) F_{31}\! \left(x \right) F_{384}\! \left(x \right)\\
F_{384}\! \left(x \right) &= \frac{F_{385}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)\\
F_{386}\! \left(x \right) &= -F_{395}\! \left(x \right)+F_{387}\! \left(x \right)\\
F_{387}\! \left(x \right) &= \frac{F_{388}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\
F_{389}\! \left(x \right) &= -F_{119}\! \left(x \right)+F_{390}\! \left(x \right)\\
F_{390}\! \left(x \right) &= -F_{393}\! \left(x \right)+F_{391}\! \left(x \right)\\
F_{391}\! \left(x \right) &= \frac{F_{392}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{392}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{393}\! \left(x \right) &= F_{376}\! \left(x \right) F_{394}\! \left(x \right)\\
F_{394}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{395}\! \left(x \right) &= F_{396}\! \left(x \right)\\
F_{396}\! \left(x \right) &= F_{397}\! \left(x \right)+F_{405}\! \left(x \right)\\
F_{397}\! \left(x \right) &= F_{28}\! \left(x \right) F_{398}\! \left(x \right)\\
F_{398}\! \left(x \right) &= F_{399}\! \left(x \right)\\
F_{399}\! \left(x \right) &= F_{31}\! \left(x \right) F_{400}\! \left(x \right)\\
F_{400}\! \left(x \right) &= \frac{F_{401}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{401}\! \left(x \right) &= F_{402}\! \left(x \right)\\
F_{402}\! \left(x \right) &= F_{31}\! \left(x \right) F_{403}\! \left(x \right)\\
F_{403}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{404}\! \left(x \right)\\
F_{404}\! \left(x \right) &= F_{310}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{405}\! \left(x \right) &= F_{406}\! \left(x \right) F_{408}\! \left(x \right)\\
F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)\\
F_{407}\! \left(x \right) &= F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{408}\! \left(x \right) &= F_{409}\! \left(x \right)\\
F_{409}\! \left(x \right) &= F_{31}\! \left(x \right) F_{410}\! \left(x \right)\\
F_{410}\! \left(x \right) &= F_{411}\! \left(x \right)+F_{413}\! \left(x \right)\\
F_{411}\! \left(x \right) &= F_{412}\! \left(x \right)\\
F_{412}\! \left(x \right) &= F_{28}\! \left(x \right) F_{32}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{413}\! \left(x \right) &= F_{272}\! \left(x \right) F_{414}\! \left(x \right)\\
F_{414}\! \left(x \right) &= \frac{F_{415}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{415}\! \left(x \right) &= -F_{466}\! \left(x \right)+F_{416}\! \left(x \right)\\
F_{416}\! \left(x \right) &= F_{417}\! \left(x \right)+F_{464}\! \left(x \right)\\
F_{417}\! \left(x \right) &= F_{418}\! \left(x \right)\\
F_{418}\! \left(x \right) &= F_{31}\! \left(x \right) F_{419}\! \left(x \right)\\
F_{419}\! \left(x \right) &= F_{420}\! \left(x \right)+F_{430}\! \left(x \right)\\
F_{420}\! \left(x \right) &= -F_{428}\! \left(x \right)+F_{421}\! \left(x \right)\\
F_{421}\! \left(x \right) &= \frac{F_{422}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{422}\! \left(x \right) &= F_{423}\! \left(x \right)\\
F_{423}\! \left(x \right) &= -F_{426}\! \left(x \right)+F_{424}\! \left(x \right)\\
F_{424}\! \left(x \right) &= \frac{F_{425}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{425}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{426}\! \left(x \right) &= \frac{F_{427}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{427}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)\\
F_{429}\! \left(x \right) &= F_{31}\! \left(x \right) F_{394}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{430}\! \left(x \right) &= -F_{453}\! \left(x \right)+F_{431}\! \left(x \right)\\
F_{431}\! \left(x \right) &= \frac{F_{432}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{432}\! \left(x \right) &= F_{433}\! \left(x \right)\\
F_{433}\! \left(x \right) &= F_{31}\! \left(x \right) F_{434}\! \left(x \right)\\
F_{434}\! \left(x \right) &= -F_{451}\! \left(x \right)+F_{435}\! \left(x \right)\\
F_{435}\! \left(x \right) &= \frac{F_{436}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{436}\! \left(x \right) &= F_{437}\! \left(x \right)\\
F_{437}\! \left(x \right) &= -F_{440}\! \left(x \right)+F_{438}\! \left(x \right)\\
F_{438}\! \left(x \right) &= \frac{F_{439}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{439}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\
F_{441}\! \left(x \right) &= F_{442}\! \left(x \right)+F_{450}\! \left(x \right)\\
F_{442}\! \left(x \right) &= -F_{445}\! \left(x \right)+F_{443}\! \left(x \right)\\
F_{443}\! \left(x \right) &= \frac{F_{444}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{444}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{445}\! \left(x \right) &= -F_{448}\! \left(x \right)+F_{446}\! \left(x \right)\\
F_{446}\! \left(x \right) &= \frac{F_{447}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{447}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{448}\! \left(x \right) &= F_{449}\! \left(x \right)\\
F_{449}\! \left(x \right) &= F_{31}\! \left(x \right) F_{441}\! \left(x \right)\\
F_{450}\! \left(x \right) &= F_{28}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)\\
F_{452}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{394}\! \left(x \right)\\
F_{453}\! \left(x \right) &= -F_{451}\! \left(x \right)+F_{454}\! \left(x \right)\\
F_{454}\! \left(x \right) &= \frac{F_{455}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)\\
F_{456}\! \left(x \right) &= F_{381}\! \left(x \right)+F_{457}\! \left(x \right)\\
F_{457}\! \left(x \right) &= -F_{458}\! \left(x \right)+F_{318}\! \left(x \right)\\
F_{458}\! \left(x \right) &= -F_{459}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{459}\! \left(x \right) &= F_{460}\! \left(x \right)\\
F_{460}\! \left(x \right) &= -F_{42}\! \left(x \right)+F_{461}\! \left(x \right)\\
F_{461}\! \left(x \right) &= F_{462}\! \left(x \right)+F_{463}\! \left(x \right)\\
F_{462}\! \left(x \right) &= F_{28}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{463}\! \left(x \right) &= F_{28}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{464}\! \left(x \right) &= F_{465}\! \left(x \right)\\
F_{465}\! \left(x \right) &= F_{22}\! \left(x \right) F_{31}\! \left(x \right) F_{394}\! \left(x \right)\\
F_{466}\! \left(x \right) &= F_{464}\! \left(x \right)+F_{467}\! \left(x \right)\\
F_{467}\! \left(x \right) &= F_{468}\! \left(x \right)\\
F_{468}\! \left(x \right) &= F_{31}\! \left(x \right) F_{420}\! \left(x \right)\\
F_{469}\! \left(x \right) &= F_{329}\! \left(x \right)+F_{470}\! \left(x \right)\\
F_{470}\! \left(x \right) &= F_{16}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{471}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{472}\! \left(x \right)\\
F_{472}\! \left(x \right) &= \frac{F_{473}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{473}\! \left(x \right) &= F_{325}\! \left(x \right)\\
F_{474}\! \left(x \right) &= F_{475}\! \left(x \right)+F_{476}\! \left(x \right)\\
F_{475}\! \left(x \right) &= F_{42}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{476}\! \left(x \right) &= F_{29}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{477}\! \left(x \right) &= -F_{495}\! \left(x \right)+F_{478}\! \left(x \right)\\
F_{478}\! \left(x \right) &= F_{479}\! \left(x \right)\\
F_{479}\! \left(x \right) &= F_{31}\! \left(x \right) F_{480}\! \left(x \right)\\
F_{480}\! \left(x \right) &= \frac{F_{481}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{481}\! \left(x \right) &= F_{482}\! \left(x \right)\\
F_{482}\! \left(x \right) &= F_{483}\! \left(x \right)+F_{484}\! \left(x \right)\\
F_{483}\! \left(x \right) &= F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{484}\! \left(x \right) &= F_{485}\! \left(x \right)\\
F_{485}\! \left(x \right) &= F_{31}\! \left(x \right) F_{486}\! \left(x \right)\\
F_{486}\! \left(x \right) &= F_{487}\! \left(x \right)+F_{492}\! \left(x \right)\\
F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)+F_{490}\! \left(x \right)\\
F_{488}\! \left(x \right) &= F_{489}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{489}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{490}\! \left(x \right) &= F_{491}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{491}\! \left(x \right) &= -F_{489}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{492}\! \left(x \right) &= F_{493}\! \left(x \right)+F_{494}\! \left(x \right)\\
F_{493}\! \left(x \right) &= F_{153}\! \left(x \right) F_{283}\! \left(x \right)\\
F_{494}\! \left(x \right) &= F_{154}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{496}\! \left(x \right) &= F_{497}\! \left(x \right)\\
F_{497}\! \left(x \right) &= F_{102}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{498}\! \left(x \right) &= F_{499}\! \left(x \right)\\
F_{499}\! \left(x \right) &= F_{31}\! \left(x \right) F_{500}\! \left(x \right)\\
F_{500}\! \left(x \right) &= F_{501}\! \left(x \right)+F_{511}\! \left(x \right)\\
F_{501}\! \left(x \right) &= F_{502}\! \left(x \right)\\
F_{502}\! \left(x \right) &= F_{31}\! \left(x \right) F_{503}\! \left(x \right)\\
F_{503}\! \left(x \right) &= F_{504}\! \left(x \right)+F_{509}\! \left(x \right)\\
F_{504}\! \left(x \right) &= F_{28}\! \left(x \right) F_{505}\! \left(x \right)\\
F_{505}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{506}\! \left(x \right)\\
F_{506}\! \left(x \right) &= F_{507}\! \left(x \right)+F_{508}\! \left(x \right)\\
F_{507}\! \left(x \right) &= F_{224}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{508}\! \left(x \right) &= F_{255}\! \left(x \right)\\
F_{509}\! \left(x \right) &= F_{510}\! \left(x \right)\\
F_{510}\! \left(x \right) &= F_{162}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{511}\! \left(x \right) &= -F_{505}\! \left(x \right)+F_{512}\! \left(x \right)\\
F_{512}\! \left(x \right) &= \frac{F_{513}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{513}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{514}\! \left(x \right) &= F_{515}\! \left(x \right)\\
F_{515}\! \left(x \right) &= F_{31}\! \left(x \right) F_{516}\! \left(x \right) F_{528}\! \left(x \right)\\
F_{516}\! \left(x \right) &= \frac{F_{517}\! \left(x \right)}{F_{394}\! \left(x \right)}\\
F_{517}\! \left(x \right) &= F_{518}\! \left(x \right)\\
F_{518}\! \left(x \right) &= -F_{526}\! \left(x \right)+F_{519}\! \left(x \right)\\
F_{519}\! \left(x \right) &= \frac{F_{520}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{520}\! \left(x \right) &= F_{521}\! \left(x \right)\\
F_{521}\! \left(x \right) &= -F_{524}\! \left(x \right)+F_{522}\! \left(x \right)\\
F_{522}\! \left(x \right) &= \frac{F_{523}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{523}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{524}\! \left(x \right) &= \frac{F_{525}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{525}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{526}\! \left(x \right) &= F_{527}\! \left(x \right)\\
F_{527}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{165}\! \left(x \right)\\
F_{528}\! \left(x \right) &= -F_{540}\! \left(x \right)+F_{529}\! \left(x \right)\\
F_{529}\! \left(x \right) &= \frac{F_{530}\! \left(x \right)}{F_{28}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{530}\! \left(x \right) &= F_{531}\! \left(x \right)\\
F_{531}\! \left(x \right) &= -F_{534}\! \left(x \right)+F_{532}\! \left(x \right)\\
F_{532}\! \left(x \right) &= \frac{F_{533}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{533}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{534}\! \left(x \right) &= -F_{537}\! \left(x \right)+F_{535}\! \left(x \right)\\
F_{535}\! \left(x \right) &= \frac{F_{536}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{536}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{537}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{538}\! \left(x \right)\\
F_{538}\! \left(x \right) &= F_{539}\! \left(x \right)\\
F_{539}\! \left(x \right) &= F_{126}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{540}\! \left(x \right) &= F_{538}\! \left(x \right)\\
F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)\\
F_{542}\! \left(x \right) &= F_{31}\! \left(x \right) F_{543}\! \left(x \right)\\
F_{543}\! \left(x \right) &= F_{544}\! \left(x \right)+F_{550}\! \left(x \right)\\
F_{544}\! \left(x \right) &= F_{44}\! \left(x \right) F_{545}\! \left(x \right)\\
F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)+F_{548}\! \left(x \right)\\
F_{546}\! \left(x \right) &= F_{547}\! \left(x \right)\\
F_{547}\! \left(x \right) &= F_{28}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{548}\! \left(x \right) &= \frac{F_{549}\! \left(x \right)}{F_{28}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{549}\! \left(x \right) &= F_{491}\! \left(x \right)\\
F_{550}\! \left(x \right) &= F_{551}\! \left(x \right)\\
F_{551}\! \left(x \right) &= F_{43}\! \left(x \right) F_{552}\! \left(x \right)\\
F_{552}\! \left(x \right) &= F_{553}\! \left(x \right)\\
F_{553}\! \left(x \right) &= F_{31}\! \left(x \right) F_{43}\! \left(x \right) F_{554}\! \left(x \right)\\
F_{554}\! \left(x \right) &= \frac{F_{555}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{555}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{556}\! \left(x \right) &= F_{557}\! \left(x \right)+F_{558}\! \left(x \right)\\
F_{557}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{325}\! \left(x \right)\\
F_{558}\! \left(x \right) &= F_{559}\! \left(x \right)\\
F_{559}\! \left(x \right) &= F_{31}\! \left(x \right) F_{560}\! \left(x \right)\\
F_{560}\! \left(x \right) &= F_{561}\! \left(x \right)+F_{570}\! \left(x \right)\\
F_{561}\! \left(x \right) &= F_{474}\! \left(x \right)+F_{562}\! \left(x \right)\\
F_{562}\! \left(x \right) &= F_{563}\! \left(x \right)+F_{564}\! \left(x \right)\\
F_{563}\! \left(x \right) &= F_{283}\! \left(x \right) F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{564}\! \left(x \right) &= F_{16}\! \left(x \right) F_{565}\! \left(x \right)\\
F_{565}\! \left(x \right) &= -F_{569}\! \left(x \right)+F_{566}\! \left(x \right)\\
F_{566}\! \left(x \right) &= F_{567}\! \left(x \right)\\
F_{567}\! \left(x \right) &= F_{31}\! \left(x \right) F_{568}\! \left(x \right)\\
F_{568}\! \left(x \right) &= F_{334}\! \left(x \right)\\
F_{569}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{570}\! \left(x \right) &= -F_{571}\! \left(x \right)+F_{486}\! \left(x \right)\\
F_{571}\! \left(x \right) &= F_{572}\! \left(x \right)+F_{574}\! \left(x \right)\\
F_{572}\! \left(x \right) &= F_{283}\! \left(x \right) F_{573}\! \left(x \right)\\
F_{573}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{569}\! \left(x \right)\\
F_{574}\! \left(x \right) &= F_{16}\! \left(x \right) F_{575}\! \left(x \right)\\
F_{575}\! \left(x \right) &= -F_{573}\! \left(x \right)+F_{576}\! \left(x \right)\\
F_{576}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{566}\! \left(x \right)\\
F_{577}\! \left(x \right) &= F_{578}\! \left(x \right)\\
F_{578}\! \left(x \right) &= F_{31}\! \left(x \right) F_{579}\! \left(x \right)\\
F_{579}\! \left(x \right) &= F_{580}\! \left(x \right)+F_{582}\! \left(x \right)\\
F_{580}\! \left(x \right) &= \frac{F_{581}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{581}\! \left(x \right) &= F_{576}\! \left(x \right)\\
F_{582}\! \left(x \right) &= F_{583}\! \left(x \right)+F_{631}\! \left(x \right)\\
F_{583}\! \left(x \right) &= F_{584}\! \left(x \right)\\
F_{584}\! \left(x \right) &= F_{31}\! \left(x \right) F_{585}\! \left(x \right)\\
F_{585}\! \left(x \right) &= F_{586}\! \left(x \right)+F_{629}\! \left(x \right)\\
F_{586}\! \left(x \right) &= \frac{F_{587}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{587}\! \left(x \right) &= F_{588}\! \left(x \right)\\
F_{588}\! \left(x \right) &= F_{568}\! \left(x \right)+F_{589}\! \left(x \right)\\
F_{589}\! \left(x \right) &= -F_{599}\! \left(x \right)+F_{590}\! \left(x \right)\\
F_{590}\! \left(x \right) &= -F_{594}\! \left(x \right)+F_{591}\! \left(x \right)\\
F_{591}\! \left(x \right) &= \frac{F_{592}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{592}\! \left(x \right) &= F_{593}\! \left(x \right)\\
F_{593}\! \left(x \right) &= -F_{271}\! \left(x \right)+F_{496}\! \left(x \right)\\
F_{594}\! \left(x \right) &= F_{595}\! \left(x \right)\\
F_{595}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right) F_{596}\! \left(x \right)\\
F_{596}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{597}\! \left(x \right)\\
F_{597}\! \left(x \right) &= F_{598}\! \left(x \right)\\
F_{598}\! \left(x \right) &= F_{272}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{596}\! \left(x \right)\\
F_{599}\! \left(x \right) &= F_{600}\! \left(x \right)\\
F_{600}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{601}\! \left(x \right)\\
F_{601}\! \left(x \right) &= F_{602}\! \left(x \right)\\
F_{602}\! \left(x \right) &= F_{31}\! \left(x \right) F_{603}\! \left(x \right)\\
F_{603}\! \left(x \right) &= -F_{627}\! \left(x \right)+F_{604}\! \left(x \right)\\
F_{604}\! \left(x \right) &= \frac{F_{605}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{605}\! \left(x \right) &= F_{606}\! \left(x \right)\\
F_{606}\! \left(x \right) &= -F_{609}\! \left(x \right)+F_{607}\! \left(x \right)\\
F_{607}\! \left(x \right) &= \frac{F_{608}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{608}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{609}\! \left(x \right) &= -F_{613}\! \left(x \right)+F_{610}\! \left(x \right)\\
F_{610}\! \left(x \right) &= \frac{F_{611}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{611}\! \left(x \right) &= F_{612}\! \left(x \right)\\
F_{612}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{613}\! \left(x \right) &= -F_{617}\! \left(x \right)+F_{614}\! \left(x \right)\\
F_{614}\! \left(x \right) &= \frac{F_{615}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{615}\! \left(x \right) &= F_{616}\! \left(x \right)\\
F_{616}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{617}\! \left(x \right) &= F_{618}\! \left(x \right)\\
F_{618}\! \left(x \right) &= F_{31}\! \left(x \right) F_{619}\! \left(x \right)\\
F_{619}\! \left(x \right) &= F_{620}\! \left(x \right)+F_{625}\! \left(x \right)\\
F_{620}\! \left(x \right) &= \frac{F_{621}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{621}\! \left(x \right) &= F_{622}\! \left(x \right)\\
F_{622}\! \left(x \right) &= -F_{335}\! \left(x \right)+F_{623}\! \left(x \right)\\
F_{623}\! \left(x \right) &= \frac{F_{624}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{624}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{625}\! \left(x \right) &= F_{626}\! \left(x \right)\\
F_{626}\! \left(x \right) &= F_{596}\! \left(x \right) F_{606}\! \left(x \right)\\
F_{627}\! \left(x \right) &= F_{628}\! \left(x \right)\\
F_{628}\! \left(x \right) &= F_{528} \left(x \right)^{2} F_{31}\! \left(x \right)\\
F_{629}\! \left(x \right) &= F_{630}\! \left(x \right)\\
F_{630}\! \left(x \right) &= F_{28}\! \left(x \right) F_{601}\! \left(x \right)\\
F_{631}\! \left(x \right) &= -F_{457}\! \left(x \right)+F_{290}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 596 rules.
Finding the specification took 24284 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 596 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= 4 x F_{6} \left(x \right)^{2}+x^{2}-F_{6} \left(x \right)^{2}+F_{6}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{24}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{545}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{526}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{0}\! \left(x \right)}\\
F_{17}\! \left(x \right) &= -F_{524}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{476}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 4 F_{21} \left(x \right)^{2} x +x^{2}-8 F_{21}\! \left(x \right) x -F_{21} \left(x \right)^{2}+4 x +3 F_{21}\! \left(x \right)-1\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{24}\! \left(x \right) &= x\\
F_{25}\! \left(x \right) &= \frac{F_{26}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{24}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{24}\! \left(x \right) F_{33}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38} \left(x \right)^{2} F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{24}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{24}\! \left(x \right) F_{38}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{24}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= \frac{F_{53}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{53}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{0}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{24}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{6}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= \frac{F_{62}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{62}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{210}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= -F_{67}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= \frac{F_{66}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{66}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= -F_{74}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= \frac{F_{73}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{73}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{24}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{24}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{38}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{184}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{38}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{0}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{24}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{24}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{39}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{35}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= -F_{98}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= \frac{F_{97}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{97}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{141}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{103}\! \left(x \right) &= -F_{104}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{104}\! \left(x \right) &= -F_{106}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= -F_{95}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{125}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{111}\! \left(x \right) &= \frac{F_{112}\! \left(x \right)}{F_{24}\! \left(x \right) F_{44}\! \left(x \right)}\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{114}\! \left(x \right) &= \frac{F_{115}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{117}\! \left(x \right) &= \frac{F_{118}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{118}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{44} \left(x \right)^{2} F_{122}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{122}\! \left(x \right) &= \frac{F_{123}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{104}\! \left(x \right)\\
F_{125}\! \left(x \right) &= -F_{128}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{126}\! \left(x \right) &= \frac{F_{127}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{127}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)+F_{131}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{38}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{131}\! \left(x \right) &= -F_{136}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= \frac{F_{133}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{103}\! \left(x \right) F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{104}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right) F_{162}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{143}\! \left(x \right) &= \frac{F_{144}\! \left(x \right)}{F_{157}\! \left(x \right)}\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= -F_{155}\! \left(x \right)+F_{146}\! \left(x \right)\\
F_{146}\! \left(x \right) &= \frac{F_{147}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= \frac{F_{149}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right)\\
F_{150}\! \left(x \right) &= -F_{70}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{153}\! \left(x \right) &= \frac{F_{154}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{154}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{38} \left(x \right)^{2} F_{117}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{160}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{160}\! \left(x \right) &= \frac{F_{161}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{161}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{162}\! \left(x \right) &= \frac{F_{163}\! \left(x \right)}{F_{24}\! \left(x \right) F_{38}\! \left(x \right)}\\
F_{163}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{38}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{171}\! \left(x \right) &= \frac{F_{172}\! \left(x \right)}{F_{24}\! \left(x \right) F_{38}\! \left(x \right)}\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)\\
F_{173}\! \left(x \right) &= -F_{177}\! \left(x \right)+F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= -F_{105}\! \left(x \right)+F_{175}\! \left(x \right)\\
F_{175}\! \left(x \right) &= \frac{F_{176}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{176}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{177}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{182}\! \left(x \right) &= \frac{F_{183}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{183}\! \left(x \right) &= F_{99}\! \left(x \right)\\
F_{184}\! \left(x \right) &= -F_{187}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{185}\! \left(x \right) &= \frac{F_{186}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{186}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{38}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)+F_{191}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{190}\! \left(x \right) &= -F_{85}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{103}\! \left(x \right) F_{24}\! \left(x \right) F_{35}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{114}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{196}\! \left(x \right) &= -F_{82}\! \left(x \right)+F_{197}\! \left(x \right)\\
F_{197}\! \left(x \right) &= \frac{F_{198}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{470}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{206}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{16}\! \left(x \right) F_{205}\! \left(x \right)\\
F_{205}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{122}\! \left(x \right) F_{208}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{208}\! \left(x \right) &= \frac{F_{209}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)\\
F_{210}\! \left(x \right) &= -F_{468}\! \left(x \right)+F_{211}\! \left(x \right)\\
F_{211}\! \left(x \right) &= -F_{215}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{212}\! \left(x \right) &= \frac{F_{213}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{214}\! \left(x \right) &= -F_{6}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{450}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)+F_{219}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{218}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{218}\! \left(x \right) &= 4 F_{218} \left(x \right)^{2} x +x^{2}-8 F_{218}\! \left(x \right) x -F_{218} \left(x \right)^{2}+4 x +3 F_{218}\! \left(x \right)-1\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{222}\! \left(x \right)+F_{447}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{223}\! \left(x \right) &= -F_{224}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{224}\! \left(x \right) &= -F_{445}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{208}\! \left(x \right)+F_{222}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{444}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{230}\! \left(x \right) &= -F_{231}\! \left(x \right)+F_{226}\! \left(x \right)\\
F_{231}\! \left(x \right) &= -F_{232}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)+F_{442}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= -F_{235}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right)+F_{239}\! \left(x \right)\\
F_{236}\! \left(x \right) &= -F_{237}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{238}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{45}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{239}\! \left(x \right) &= -F_{345}\! \left(x \right)+F_{240}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{344}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{24}\! \left(x \right) F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{244}\! \left(x \right)+F_{316}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right) F_{262}\! \left(x \right)\\
F_{245}\! \left(x \right) &= \frac{F_{246}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{246}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{249}\! \left(x \right)\\
F_{248}\! \left(x \right) &= 4 x F_{248} \left(x \right)^{2}+x^{2}-F_{248} \left(x \right)^{2}+F_{248}\! \left(x \right)\\
F_{249}\! \left(x \right) &= \frac{F_{250}\! \left(x \right)}{F_{262}\! \left(x \right)}\\
F_{250}\! \left(x \right) &= -F_{315}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right)+F_{296}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{253}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{253}\! \left(x \right) &= \frac{F_{254}\! \left(x \right)}{F_{45}\! \left(x \right)}\\
F_{254}\! \left(x \right) &= -F_{260}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= \frac{F_{256}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{24}\! \left(x \right) F_{259}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{241}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)+F_{264}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{247}\! \left(x \right) F_{262}\! \left(x \right)\\
F_{262}\! \left(x \right) &= \frac{F_{263}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45} \left(x \right)^{2}}\\
F_{263}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{265}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{248}\! \left(x \right) F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= \frac{F_{267}\! \left(x \right)}{F_{44}\! \left(x \right)}\\
F_{267}\! \left(x \right) &= -F_{293}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{268}\! \left(x \right) &= \frac{F_{269}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{269}\! \left(x \right) &= F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{279}\! \left(x \right)\\
F_{271}\! \left(x \right) &= -F_{276}\! \left(x \right)+F_{272}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{24}\! \left(x \right) F_{262}\! \left(x \right) F_{274}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{274}\! \left(x \right) &= \frac{F_{275}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{275}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{139}\! \left(x \right) F_{277}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{160}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{279}\! \left(x \right) &= -F_{280}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{280}\! \left(x \right) &= F_{281}\! \left(x \right)\\
F_{281}\! \left(x \right) &= -F_{289}\! \left(x \right)+F_{282}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right)+F_{288}\! \left(x \right)\\
F_{283}\! \left(x \right) &= F_{284}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)\\
F_{285}\! \left(x \right) &= F_{286}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{24}\! \left(x \right) F_{282}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{36}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{289}\! \left(x \right) &= -F_{292}\! \left(x \right)+F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= \frac{F_{291}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{291}\! \left(x \right) &= F_{286}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{284}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{262}\! \left(x \right) F_{294}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{294}\! \left(x \right) &= \frac{F_{295}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{295}\! \left(x \right) &= F_{247}\! \left(x \right)\\
F_{296}\! \left(x \right) &= -F_{313}\! \left(x \right)+F_{297}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{24}\! \left(x \right) F_{299}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{300}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{262}\! \left(x \right) F_{301}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{311}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{305}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right)+F_{308}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{307}\! \left(x \right) &= 0\\
F_{308}\! \left(x \right) &= F_{24}\! \left(x \right) F_{309}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{306}\! \left(x \right)\\
F_{310}\! \left(x \right) &= F_{24}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{312}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{312}\! \left(x \right) &= 32 x^{4} F_{312} \left(x \right)^{2}-32 \sqrt{1-4 x}\, x^{3} F_{312}\! \left(x \right)+8 x^{5}-64 x^{4} F_{312}\! \left(x \right)-8 x^{3} F_{312} \left(x \right)^{2}+32 \sqrt{1-4 x}\, x^{3}+8 \sqrt{1-4 x}\, x^{2} F_{312}\! \left(x \right)+32 x^{4}+48 x^{3} F_{312}\! \left(x \right)-24 \sqrt{1-4 x}\, x^{2}-72 x^{3}-8 x^{2} F_{312}\! \left(x \right)+4 \sqrt{1-4 x}\, x +32 x^{2}-4 x +F_{312}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{314}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{253}\! \left(x \right)+F_{262}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{252}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{266}\! \left(x \right) F_{317}\! \left(x \right)\\
F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{323}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{319}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{320}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{24}\! \left(x \right) F_{321}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{318}\! \left(x \right)+F_{322}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{323}\! \left(x \right) &= \frac{F_{324}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{324}\! \left(x \right) &= -F_{342}\! \left(x \right)+F_{325}\! \left(x \right)\\
F_{325}\! \left(x \right) &= -F_{326}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{326}\! \left(x \right) &= -F_{333}\! \left(x \right)+F_{327}\! \left(x \right)\\
F_{327}\! \left(x \right) &= F_{328}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{211}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{329}\! \left(x \right) &= F_{330}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{24}\! \left(x \right) F_{331}\! \left(x \right)\\
F_{331}\! \left(x \right) &= \frac{F_{332}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{332}\! \left(x \right) &= F_{215}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{334}\! \left(x \right)+F_{337}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{218}\! \left(x \right)+F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{336}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{24}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{338}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{24}\! \left(x \right) F_{339}\! \left(x \right)\\
F_{339}\! \left(x \right) &= F_{340}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{340}\! \left(x \right) &= F_{341}\! \left(x \right)\\
F_{341}\! \left(x \right) &= F_{24}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{343}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{24}\! \left(x \right) F_{319}\! \left(x \right)\\
F_{344}\! \left(x \right) &= -F_{31}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{345}\! \left(x \right) &= F_{346}\! \left(x \right)\\
F_{346}\! \left(x \right) &= F_{24}\! \left(x \right) F_{347}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{347}\! \left(x \right) &= \frac{F_{348}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{348}\! \left(x \right) &= F_{349}\! \left(x \right)\\
F_{349}\! \left(x \right) &= -F_{360}\! \left(x \right)+F_{350}\! \left(x \right)\\
F_{350}\! \left(x \right) &= \frac{F_{351}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)\\
F_{352}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{353}\! \left(x \right)\\
F_{353}\! \left(x \right) &= -F_{356}\! \left(x \right)+F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= \frac{F_{355}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{355}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{356}\! \left(x \right) &= F_{157}\! \left(x \right) F_{319}\! \left(x \right)\\
F_{357}\! \left(x \right) &= F_{358}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{359}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{360}\! \left(x \right) &= F_{361}\! \left(x \right)\\
F_{361}\! \left(x \right) &= F_{362}\! \left(x \right)+F_{371}\! \left(x \right)\\
F_{362}\! \left(x \right) &= F_{363}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{364}\! \left(x \right)\\
F_{364}\! \left(x \right) &= F_{24}\! \left(x \right) F_{365}\! \left(x \right)\\
F_{365}\! \left(x \right) &= \frac{F_{366}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{366}\! \left(x \right) &= F_{367}\! \left(x \right)\\
F_{367}\! \left(x \right) &= F_{24}\! \left(x \right) F_{368}\! \left(x \right)\\
F_{368}\! \left(x \right) &= F_{369}\! \left(x \right)+F_{370}\! \left(x \right)\\
F_{369}\! \left(x \right) &= F_{314}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{370}\! \left(x \right) &= F_{262}\! \left(x \right) F_{309}\! \left(x \right)\\
F_{371}\! \left(x \right) &= F_{372}\! \left(x \right) F_{374}\! \left(x \right)\\
F_{372}\! \left(x \right) &= F_{373}\! \left(x \right)\\
F_{373}\! \left(x \right) &= F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{374}\! \left(x \right) &= F_{375}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{24}\! \left(x \right) F_{376}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{377}\! \left(x \right)+F_{379}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{378}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{303}\! \left(x \right) F_{38}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{380}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{380}\! \left(x \right) &= \frac{F_{381}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{381}\! \left(x \right) &= -F_{439}\! \left(x \right)+F_{382}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)+F_{437}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{384}\! \left(x \right)\\
F_{384}\! \left(x \right) &= F_{24}\! \left(x \right) F_{385}\! \left(x \right)\\
F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)+F_{396}\! \left(x \right)\\
F_{386}\! \left(x \right) &= -F_{394}\! \left(x \right)+F_{387}\! \left(x \right)\\
F_{387}\! \left(x \right) &= \frac{F_{388}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\
F_{389}\! \left(x \right) &= -F_{392}\! \left(x \right)+F_{390}\! \left(x \right)\\
F_{390}\! \left(x \right) &= \frac{F_{391}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{391}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{392}\! \left(x \right) &= \frac{F_{393}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{393}\! \left(x \right) &= F_{357}\! \left(x \right)\\
F_{394}\! \left(x \right) &= F_{395}\! \left(x \right)\\
F_{395}\! \left(x \right) &= F_{157}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{396}\! \left(x \right) &= -F_{419}\! \left(x \right)+F_{397}\! \left(x \right)\\
F_{397}\! \left(x \right) &= \frac{F_{398}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{398}\! \left(x \right) &= F_{399}\! \left(x \right)\\
F_{399}\! \left(x \right) &= F_{24}\! \left(x \right) F_{400}\! \left(x \right)\\
F_{400}\! \left(x \right) &= -F_{417}\! \left(x \right)+F_{401}\! \left(x \right)\\
F_{401}\! \left(x \right) &= \frac{F_{402}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{402}\! \left(x \right) &= F_{403}\! \left(x \right)\\
F_{403}\! \left(x \right) &= -F_{406}\! \left(x \right)+F_{404}\! \left(x \right)\\
F_{404}\! \left(x \right) &= \frac{F_{405}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{405}\! \left(x \right) &= F_{211}\! \left(x \right)\\
F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)\\
F_{407}\! \left(x \right) &= F_{408}\! \left(x \right)+F_{416}\! \left(x \right)\\
F_{408}\! \left(x \right) &= -F_{411}\! \left(x \right)+F_{409}\! \left(x \right)\\
F_{409}\! \left(x \right) &= \frac{F_{410}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{410}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{411}\! \left(x \right) &= -F_{414}\! \left(x \right)+F_{412}\! \left(x \right)\\
F_{412}\! \left(x \right) &= \frac{F_{413}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{413}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{414}\! \left(x \right) &= F_{415}\! \left(x \right)\\
F_{415}\! \left(x \right) &= F_{24}\! \left(x \right) F_{407}\! \left(x \right)\\
F_{416}\! \left(x \right) &= F_{38}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{417}\! \left(x \right) &= F_{418}\! \left(x \right)\\
F_{418}\! \left(x \right) &= F_{157}\! \left(x \right) F_{24}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{419}\! \left(x \right) &= -F_{417}\! \left(x \right)+F_{420}\! \left(x \right)\\
F_{420}\! \left(x \right) &= \frac{F_{421}\! \left(x \right)}{F_{24}\! \left(x \right) F_{45}\! \left(x \right)}\\
F_{421}\! \left(x \right) &= F_{422}\! \left(x \right)\\
F_{422}\! \left(x \right) &= F_{344}\! \left(x \right)+F_{423}\! \left(x \right)\\
F_{423}\! \left(x \right) &= -F_{424}\! \left(x \right)+F_{270}\! \left(x \right)\\
F_{424}\! \left(x \right) &= -F_{432}\! \left(x \right)+F_{425}\! \left(x \right)\\
F_{425}\! \left(x \right) &= F_{426}\! \left(x \right)\\
F_{426}\! \left(x \right) &= F_{24}\! \left(x \right) F_{427}\! \left(x \right)\\
F_{427}\! \left(x \right) &= \frac{F_{428}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)\\
F_{429}\! \left(x \right) &= \frac{F_{430}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{430}\! \left(x \right) &= F_{431}\! \left(x \right)\\
F_{431}\! \left(x \right) &= -F_{357}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{432}\! \left(x \right) &= F_{433}\! \left(x \right)\\
F_{433}\! \left(x \right) &= -F_{35}\! \left(x \right)+F_{434}\! \left(x \right)\\
F_{434}\! \left(x \right) &= F_{435}\! \left(x \right)+F_{436}\! \left(x \right)\\
F_{435}\! \left(x \right) &= F_{35}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{436}\! \left(x \right) &= F_{35}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{437}\! \left(x \right) &= F_{438}\! \left(x \right)\\
F_{438}\! \left(x \right) &= F_{157}\! \left(x \right) F_{24}\! \left(x \right) F_{248}\! \left(x \right)\\
F_{439}\! \left(x \right) &= F_{437}\! \left(x \right)+F_{440}\! \left(x \right)\\
F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\
F_{441}\! \left(x \right) &= F_{24}\! \left(x \right) F_{386}\! \left(x \right)\\
F_{442}\! \left(x \right) &= F_{443}\! \left(x \right)+F_{444}\! \left(x \right)\\
F_{443}\! \left(x \right) &= F_{16}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{444}\! \left(x \right) &= -F_{222}\! \left(x \right)+F_{425}\! \left(x \right)\\
F_{445}\! \left(x \right) &= F_{270}\! \left(x \right)+F_{446}\! \left(x \right)\\
F_{446}\! \left(x \right) &= F_{160}\! \left(x \right)\\
F_{447}\! \left(x \right) &= F_{448}\! \left(x \right)+F_{449}\! \left(x \right)\\
F_{448}\! \left(x \right) &= F_{223}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{449}\! \left(x \right) &= F_{224}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{450}\! \left(x \right) &= -F_{467}\! \left(x \right)+F_{451}\! \left(x \right)\\
F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)\\
F_{452}\! \left(x \right) &= F_{24}\! \left(x \right) F_{453}\! \left(x \right)\\
F_{453}\! \left(x \right) &= \frac{F_{454}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{454}\! \left(x \right) &= F_{455}\! \left(x \right)\\
F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)+F_{458}\! \left(x \right)\\
F_{456}\! \left(x \right) &= F_{218}\! \left(x \right) F_{457}\! \left(x \right)\\
F_{457}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{458}\! \left(x \right) &= F_{459}\! \left(x \right)\\
F_{459}\! \left(x \right) &= F_{24}\! \left(x \right) F_{460}\! \left(x \right)\\
F_{460}\! \left(x \right) &= F_{461}\! \left(x \right)+F_{464}\! \left(x \right)\\
F_{461}\! \left(x \right) &= F_{462}\! \left(x \right)+F_{463}\! \left(x \right)\\
F_{462}\! \left(x \right) &= F_{177}\! \left(x \right) F_{208}\! \left(x \right)\\
F_{463}\! \left(x \right) &= F_{173}\! \left(x \right) F_{223}\! \left(x \right)\\
F_{464}\! \left(x \right) &= F_{465}\! \left(x \right)+F_{466}\! \left(x \right)\\
F_{465}\! \left(x \right) &= F_{104}\! \left(x \right) F_{234}\! \left(x \right)\\
F_{466}\! \left(x \right) &= F_{106}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{467}\! \left(x \right) &= F_{457}\! \left(x \right)+F_{468}\! \left(x \right)\\
F_{468}\! \left(x \right) &= F_{469}\! \left(x \right)\\
F_{469}\! \left(x \right) &= F_{228}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{470}\! \left(x \right) &= F_{471}\! \left(x \right)\\
F_{471}\! \left(x \right) &= F_{472}\! \left(x \right)+F_{487}\! \left(x \right)\\
F_{472}\! \left(x \right) &= F_{473}\! \left(x \right)\\
F_{473}\! \left(x \right) &= -F_{480}\! \left(x \right)+F_{474}\! \left(x \right)\\
F_{474}\! \left(x \right) &= \frac{F_{475}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{475}\! \left(x \right) &= F_{476}\! \left(x \right)\\
F_{476}\! \left(x \right) &= F_{477}\! \left(x \right)\\
F_{477}\! \left(x \right) &= F_{24}\! \left(x \right) F_{478}\! \left(x \right)\\
F_{478}\! \left(x \right) &= \frac{F_{479}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{479}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{480}\! \left(x \right) &= -F_{481}\! \left(x \right)+F_{478}\! \left(x \right)\\
F_{481}\! \left(x \right) &= F_{482}\! \left(x \right)\\
F_{482}\! \left(x \right) &= F_{24}\! \left(x \right) F_{483}\! \left(x \right)\\
F_{483}\! \left(x \right) &= F_{484}\! \left(x \right)+F_{485}\! \left(x \right)\\
F_{484}\! \left(x \right) &= F_{38}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{485}\! \left(x \right) &= F_{486}\! \left(x \right)\\
F_{486}\! \left(x \right) &= F_{184}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)+F_{500}\! \left(x \right)\\
F_{488}\! \left(x \right) &= F_{489}\! \left(x \right)\\
F_{489}\! \left(x \right) &= F_{38}\! \left(x \right) F_{490}\! \left(x \right)\\
F_{490}\! \left(x \right) &= -F_{497}\! \left(x \right)+F_{491}\! \left(x \right)\\
F_{491}\! \left(x \right) &= F_{492}\! \left(x \right)+F_{493}\! \left(x \right)\\
F_{492}\! \left(x \right) &= -F_{205}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{493}\! \left(x \right) &= F_{494}\! \left(x \right)\\
F_{494}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{495}\! \left(x \right)\\
F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)\\
F_{496}\! \left(x \right) &= F_{131}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{497}\! \left(x \right) &= F_{498}\! \left(x \right)\\
F_{498}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{499}\! \left(x \right)\\
F_{499}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{500}\! \left(x \right) &= F_{501}\! \left(x \right)\\
F_{501}\! \left(x \right) &= -F_{522}\! \left(x \right)+F_{502}\! \left(x \right)\\
F_{502}\! \left(x \right) &= -F_{515}\! \left(x \right)+F_{503}\! \left(x \right)\\
F_{503}\! \left(x \right) &= F_{504}\! \left(x \right)\\
F_{504}\! \left(x \right) &= -F_{507}\! \left(x \right)+F_{505}\! \left(x \right)\\
F_{505}\! \left(x \right) &= \frac{F_{506}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{506}\! \left(x \right) &= F_{498}\! \left(x \right)\\
F_{507}\! \left(x \right) &= F_{508}\! \left(x \right)\\
F_{508}\! \left(x \right) &= F_{509}\! \left(x \right)+F_{511}\! \left(x \right)\\
F_{509}\! \left(x \right) &= F_{510}\! \left(x \right)\\
F_{510}\! \left(x \right) &= F_{103}\! \left(x \right) F_{24}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{511}\! \left(x \right) &= F_{512}\! \left(x \right)+F_{514}\! \left(x \right)\\
F_{512}\! \left(x \right) &= F_{513}\! \left(x \right)\\
F_{513}\! \left(x \right) &= F_{122}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{514}\! \left(x \right) &= F_{38}\! \left(x \right) F_{494}\! \left(x \right)\\
F_{515}\! \left(x \right) &= -F_{522}\! \left(x \right)+F_{516}\! \left(x \right)\\
F_{516}\! \left(x \right) &= \frac{F_{517}\! \left(x \right)}{F_{38}\! \left(x \right)}\\
F_{517}\! \left(x \right) &= F_{518}\! \left(x \right)\\
F_{518}\! \left(x \right) &= -F_{521}\! \left(x \right)+F_{519}\! \left(x \right)\\
F_{519}\! \left(x \right) &= \frac{F_{520}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{520}\! \left(x \right) &= F_{498}\! \left(x \right)\\
F_{521}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{522}\! \left(x \right) &= F_{523}\! \left(x \right)\\
F_{523}\! \left(x \right) &= F_{122}\! \left(x \right) F_{24}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{524}\! \left(x \right) &= F_{525}\! \left(x \right)+F_{526}\! \left(x \right)\\
F_{525}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{277}\! \left(x \right)\\
F_{526}\! \left(x \right) &= F_{527}\! \left(x \right)\\
F_{527}\! \left(x \right) &= F_{24}\! \left(x \right) F_{528}\! \left(x \right)\\
F_{528}\! \left(x \right) &= F_{529}\! \left(x \right)+F_{538}\! \left(x \right)\\
F_{529}\! \left(x \right) &= F_{447}\! \left(x \right)+F_{530}\! \left(x \right)\\
F_{530}\! \left(x \right) &= F_{531}\! \left(x \right)+F_{532}\! \left(x \right)\\
F_{531}\! \left(x \right) &= F_{234}\! \left(x \right) F_{24}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{532}\! \left(x \right) &= F_{16}\! \left(x \right) F_{533}\! \left(x \right)\\
F_{533}\! \left(x \right) &= -F_{537}\! \left(x \right)+F_{534}\! \left(x \right)\\
F_{534}\! \left(x \right) &= F_{535}\! \left(x \right)\\
F_{535}\! \left(x \right) &= F_{24}\! \left(x \right) F_{536}\! \left(x \right)\\
F_{536}\! \left(x \right) &= F_{284}\! \left(x \right)\\
F_{537}\! \left(x \right) &= F_{24}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{538}\! \left(x \right) &= -F_{539}\! \left(x \right)+F_{460}\! \left(x \right)\\
F_{539}\! \left(x \right) &= F_{540}\! \left(x \right)+F_{542}\! \left(x \right)\\
F_{540}\! \left(x \right) &= F_{234}\! \left(x \right) F_{541}\! \left(x \right)\\
F_{541}\! \left(x \right) &= F_{248}\! \left(x \right)+F_{537}\! \left(x \right)\\
F_{542}\! \left(x \right) &= F_{16}\! \left(x \right) F_{543}\! \left(x \right)\\
F_{543}\! \left(x \right) &= -F_{541}\! \left(x \right)+F_{544}\! \left(x \right)\\
F_{544}\! \left(x \right) &= F_{277}\! \left(x \right)+F_{534}\! \left(x \right)\\
F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)\\
F_{546}\! \left(x \right) &= F_{24}\! \left(x \right) F_{547}\! \left(x \right)\\
F_{547}\! \left(x \right) &= F_{548}\! \left(x \right)+F_{550}\! \left(x \right)\\
F_{548}\! \left(x \right) &= \frac{F_{549}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{549}\! \left(x \right) &= F_{544}\! \left(x \right)\\
F_{550}\! \left(x \right) &= F_{551}\! \left(x \right)+F_{595}\! \left(x \right)\\
F_{551}\! \left(x \right) &= F_{552}\! \left(x \right)\\
F_{552}\! \left(x \right) &= F_{24}\! \left(x \right) F_{553}\! \left(x \right)\\
F_{553}\! \left(x \right) &= F_{554}\! \left(x \right)+F_{593}\! \left(x \right)\\
F_{554}\! \left(x \right) &= \frac{F_{555}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{555}\! \left(x \right) &= F_{556}\! \left(x \right)\\
F_{556}\! \left(x \right) &= F_{536}\! \left(x \right)+F_{557}\! \left(x \right)\\
F_{557}\! \left(x \right) &= -F_{567}\! \left(x \right)+F_{558}\! \left(x \right)\\
F_{558}\! \left(x \right) &= -F_{562}\! \left(x \right)+F_{559}\! \left(x \right)\\
F_{559}\! \left(x \right) &= \frac{F_{560}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{560}\! \left(x \right) &= F_{561}\! \left(x \right)\\
F_{561}\! \left(x \right) &= -F_{336}\! \left(x \right)+F_{468}\! \left(x \right)\\
F_{562}\! \left(x \right) &= F_{563}\! \left(x \right)\\
F_{563}\! \left(x \right) &= F_{24}\! \left(x \right) F_{39}\! \left(x \right) F_{564}\! \left(x \right)\\
F_{564}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{565}\! \left(x \right)\\
F_{565}\! \left(x \right) &= F_{566}\! \left(x \right)\\
F_{566}\! \left(x \right) &= F_{24}\! \left(x \right) F_{38}\! \left(x \right) F_{45}\! \left(x \right) F_{564}\! \left(x \right)\\
F_{567}\! \left(x \right) &= F_{568}\! \left(x \right)\\
F_{568}\! \left(x \right) &= F_{24}\! \left(x \right) F_{38}\! \left(x \right) F_{569}\! \left(x \right)\\
F_{569}\! \left(x \right) &= F_{570}\! \left(x \right)\\
F_{570}\! \left(x \right) &= F_{24}\! \left(x \right) F_{571}\! \left(x \right)\\
F_{571}\! \left(x \right) &= -F_{591}\! \left(x \right)+F_{572}\! \left(x \right)\\
F_{572}\! \left(x \right) &= \frac{F_{573}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{573}\! \left(x \right) &= F_{574}\! \left(x \right)\\
F_{574}\! \left(x \right) &= -F_{577}\! \left(x \right)+F_{575}\! \left(x \right)\\
F_{575}\! \left(x \right) &= \frac{F_{576}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{576}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{577}\! \left(x \right) &= -F_{578}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{578}\! \left(x \right) &= -F_{581}\! \left(x \right)+F_{579}\! \left(x \right)\\
F_{579}\! \left(x \right) &= \frac{F_{580}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{580}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{581}\! \left(x \right) &= F_{582}\! \left(x \right)\\
F_{582}\! \left(x \right) &= F_{24}\! \left(x \right) F_{583}\! \left(x \right)\\
F_{583}\! \left(x \right) &= F_{584}\! \left(x \right)+F_{589}\! \left(x \right)\\
F_{584}\! \left(x \right) &= \frac{F_{585}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{585}\! \left(x \right) &= F_{586}\! \left(x \right)\\
F_{586}\! \left(x \right) &= -F_{285}\! \left(x \right)+F_{587}\! \left(x \right)\\
F_{587}\! \left(x \right) &= \frac{F_{588}\! \left(x \right)}{F_{24}\! \left(x \right)}\\
F_{588}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{589}\! \left(x \right) &= F_{590}\! \left(x \right)\\
F_{590}\! \left(x \right) &= F_{564}\! \left(x \right) F_{574}\! \left(x \right)\\
F_{591}\! \left(x \right) &= F_{592}\! \left(x \right)\\
F_{592}\! \left(x \right) &= F_{162} \left(x \right)^{2} F_{24}\! \left(x \right)\\
F_{593}\! \left(x \right) &= F_{594}\! \left(x \right)\\
F_{594}\! \left(x \right) &= F_{38}\! \left(x \right) F_{569}\! \left(x \right)\\
F_{595}\! \left(x \right) &= -F_{423}\! \left(x \right)+F_{241}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 632 rules.
Finding the specification took 78359 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 632 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{5}\! \left(x \right) &= 4 F_{5} \left(x \right)^{2} x +x^{2}-8 F_{5}\! \left(x \right) x -F_{5} \left(x \right)^{2}+4 x +3 F_{5}\! \left(x \right)-1\\
F_{6}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{31}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{577}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{558}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{16}\! \left(x \right) &= \frac{F_{17}\! \left(x \right)}{F_{0}\! \left(x \right)}\\
F_{17}\! \left(x \right) &= -F_{556}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{192}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 4 x F_{22} \left(x \right)^{2}+x^{2}-F_{22} \left(x \right)^{2}+F_{22}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{224}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{31}\! \left(x \right) &= x\\
F_{32}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{31}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{25}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{42}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= -F_{49}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= \frac{F_{48}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{48}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{54}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{53}\! \left(x \right) &= 4 x F_{53} \left(x \right)^{2}+x^{2}-F_{53} \left(x \right)^{2}+F_{53}\! \left(x \right)\\
F_{54}\! \left(x \right) &= -F_{57}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= \frac{F_{56}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{56}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{541}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{514}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{28}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= -F_{153}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= -F_{66}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= \frac{F_{65}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{65}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{142}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= -F_{73}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= \frac{F_{72}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{72}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{498}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{0}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{31}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{50}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{63}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= -F_{496}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= -F_{89}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= \frac{F_{84}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= \frac{F_{88}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{88}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{477}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{5}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{31}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{474}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{29}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= -F_{99}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= \frac{F_{98}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{98}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{99}\! \left(x \right) &= -F_{471}\! \left(x \right)+F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{112}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{104}\! \left(x \right) &= -F_{106}\! \left(x \right)+F_{105}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{95}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{106}\! \left(x \right) &= -F_{281}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{110}\! \left(x \right) &= \frac{F_{111}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{112}\! \left(x \right) &= \frac{F_{113}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\
F_{114}\! \left(x \right) &= -F_{119}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{117}\! \left(x \right) &= \frac{F_{118}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{118}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{280}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{275}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{272}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{126}\! \left(x \right) &= \frac{F_{127}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)\\
F_{128}\! \left(x \right) &= \frac{F_{129}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{129}\! \left(x \right) &= -F_{270}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{132}\! \left(x \right) &= \frac{F_{133}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)+F_{137}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{31}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{138}\! \left(x \right) &= \frac{F_{139}\! \left(x \right)}{F_{269}\! \left(x \right)}\\
F_{139}\! \left(x \right) &= -F_{261}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{141}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{186}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{141}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{31}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{150}\! \left(x \right) &= \frac{F_{151}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{151}\! \left(x \right) &= F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= -F_{21}\! \left(x \right)+F_{153}\! \left(x \right)\\
F_{153}\! \left(x \right) &= -F_{154}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{155}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{159}\! \left(x \right) &= \frac{F_{160}\! \left(x \right)}{F_{31}\! \left(x \right) F_{43}\! \left(x \right)}\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{167}\! \left(x \right)\\
F_{162}\! \left(x \right) &= \frac{F_{163}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right) F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{165}\! \left(x \right) &= \frac{F_{166}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{166}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{169}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{43} \left(x \right)^{2} F_{150}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{170}\! \left(x \right) &= -F_{173}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{171}\! \left(x \right) &= \frac{F_{172}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{172}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{176}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{28}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{176}\! \left(x \right) &= -F_{181}\! \left(x \right)+F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= \frac{F_{178}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{178}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)+F_{182}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{175}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{184}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{184}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{153}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{218}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{189}\! \left(x \right)\\
F_{189}\! \left(x \right) &= -F_{197}\! \left(x \right)+F_{190}\! \left(x \right)\\
F_{190}\! \left(x \right) &= \frac{F_{191}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{193}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{194}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{194}\! \left(x \right) &= \frac{F_{195}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{196}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{197}\! \left(x \right) &= -F_{198}\! \left(x \right)+F_{194}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{216}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{206}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{0}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{207}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{207}\! \left(x \right) &= F_{208}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{211}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{29}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{42}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{212}\! \left(x \right) &= -F_{215}\! \left(x \right)+F_{213}\! \left(x \right)\\
F_{213}\! \left(x \right) &= \frac{F_{214}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{214}\! \left(x \right) &= F_{207}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{206}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{217}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{212}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)+F_{232}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{221}\! \left(x \right) &= -F_{229}\! \left(x \right)+F_{222}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)+F_{225}\! \left(x \right)\\
F_{223}\! \left(x \right) &= -F_{141}\! \left(x \right)+F_{224}\! \left(x \right)\\
F_{224}\! \left(x \right) &= -F_{204}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{226}\! \left(x \right)\\
F_{226}\! \left(x \right) &= -F_{152}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)\\
F_{228}\! \left(x \right) &= F_{176}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{230}\! \left(x \right) &= -F_{152}\! \left(x \right)+F_{231}\! \left(x \right)\\
F_{231}\! \left(x \right) &= -F_{206}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{233}\! \left(x \right)\\
F_{233}\! \left(x \right) &= -F_{148}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)+F_{259}\! \left(x \right)\\
F_{235}\! \left(x \right) &= -F_{248}\! \left(x \right)+F_{236}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)\\
F_{237}\! \left(x \right) &= -F_{240}\! \left(x \right)+F_{238}\! \left(x \right)\\
F_{238}\! \left(x \right) &= \frac{F_{239}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{239}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{242}\! \left(x \right)+F_{244}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{243}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{31}\! \left(x \right) F_{42}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{247}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{150}\! \left(x \right) F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{226}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{248}\! \left(x \right) &= -F_{257}\! \left(x \right)+F_{249}\! \left(x \right)\\
F_{249}\! \left(x \right) &= \frac{F_{250}\! \left(x \right)}{F_{28}\! \left(x \right)}\\
F_{250}\! \left(x \right) &= -F_{253}\! \left(x \right)+F_{251}\! \left(x \right)\\
F_{251}\! \left(x \right) &= \frac{F_{252}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{252}\! \left(x \right) &= F_{230}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)\\
F_{254}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{256}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{31}\! \left(x \right) F_{42}\! \left(x \right) F_{43}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= F_{150}\! \left(x \right) F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)\\
F_{260}\! \left(x \right) &= -F_{257}\! \left(x \right)+F_{148}\! \left(x \right)\\
F_{261}\! \left(x \right) &= -F_{265}\! \left(x \right)+F_{262}\! \left(x \right)\\
F_{262}\! \left(x \right) &= -F_{134}\! \left(x \right)+F_{263}\! \left(x \right)\\
F_{263}\! \left(x \right) &= \frac{F_{264}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{264}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{265}\! \left(x \right) &= -F_{266}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{268}\! \left(x \right)\\
F_{267}\! \left(x \right) &= 4 F_{267} \left(x \right)^{2} x +x^{2}-8 F_{267}\! \left(x \right) x -F_{267} \left(x \right)^{2}+4 x +3 F_{267}\! \left(x \right)-1\\
F_{268}\! \left(x \right) &= F_{269}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{271}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{274}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{272}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{275}\! \left(x \right) &= -F_{279}\! \left(x \right)+F_{276}\! \left(x \right)\\
F_{276}\! \left(x \right) &= \frac{F_{277}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{279}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{280}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)+F_{469}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{283}\! \left(x \right)\\
F_{283}\! \left(x \right) &= -F_{284}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{285}\! \left(x \right)+F_{288}\! \left(x \right)\\
F_{285}\! \left(x \right) &= -F_{286}\! \left(x \right)+F_{279}\! \left(x \right)\\
F_{286}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{272}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{288}\! \left(x \right) &= -F_{382}\! \left(x \right)+F_{289}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{381}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{291}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)+F_{365}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right) F_{310}\! \left(x \right)\\
F_{294}\! \left(x \right) &= \frac{F_{295}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{295}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{297}\! \left(x \right)\\
F_{297}\! \left(x \right) &= \frac{F_{298}\! \left(x \right)}{F_{310}\! \left(x \right)}\\
F_{298}\! \left(x \right) &= -F_{364}\! \left(x \right)+F_{299}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{346}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{273}\! \left(x \right) F_{301}\! \left(x \right)\\
F_{301}\! \left(x \right) &= \frac{F_{302}\! \left(x \right)}{F_{272}\! \left(x \right)}\\
F_{302}\! \left(x \right) &= -F_{308}\! \left(x \right)+F_{303}\! \left(x \right)\\
F_{303}\! \left(x \right) &= \frac{F_{304}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{304}\! \left(x \right) &= F_{305}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{306}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{307}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{307}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{308}\! \left(x \right) &= F_{309}\! \left(x \right)+F_{312}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{296}\! \left(x \right) F_{310}\! \left(x \right)\\
F_{310}\! \left(x \right) &= \frac{F_{311}\! \left(x \right)}{F_{272} \left(x \right)^{2} F_{31}\! \left(x \right)}\\
F_{311}\! \left(x \right) &= F_{124}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{313}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{22}\! \left(x \right) F_{314}\! \left(x \right)\\
F_{314}\! \left(x \right) &= \frac{F_{315}\! \left(x \right)}{F_{43}\! \left(x \right)}\\
F_{315}\! \left(x \right) &= -F_{343}\! \left(x \right)+F_{316}\! \left(x \right)\\
F_{316}\! \left(x \right) &= \frac{F_{317}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{317}\! \left(x \right) &= F_{318}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)+F_{327}\! \left(x \right)\\
F_{319}\! \left(x \right) &= -F_{324}\! \left(x \right)+F_{320}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{272}\! \left(x \right) F_{31}\! \left(x \right) F_{310}\! \left(x \right) F_{322}\! \left(x \right)\\
F_{322}\! \left(x \right) &= \frac{F_{323}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{323}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{324}\! \left(x \right) &= F_{184}\! \left(x \right) F_{325}\! \left(x \right)\\
F_{325}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{326}\! \left(x \right)\\
F_{326}\! \left(x \right) &= -F_{26}\! \left(x \right)+F_{204}\! \left(x \right)\\
F_{327}\! \left(x \right) &= -F_{330}\! \left(x \right)+F_{328}\! \left(x \right)\\
F_{328}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{329}\! \left(x \right)\\
F_{329}\! \left(x \right) &= -F_{95}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{330}\! \left(x \right) &= F_{331}\! \left(x \right)\\
F_{331}\! \left(x \right) &= -F_{339}\! \left(x \right)+F_{332}\! \left(x \right)\\
F_{332}\! \left(x \right) &= F_{333}\! \left(x \right)+F_{338}\! \left(x \right)\\
F_{333}\! \left(x \right) &= F_{28}\! \left(x \right) F_{334}\! \left(x \right)\\
F_{334}\! \left(x \right) &= F_{335}\! \left(x \right)\\
F_{335}\! \left(x \right) &= F_{336}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{336}\! \left(x \right) &= F_{337}\! \left(x \right)\\
F_{337}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{332}\! \left(x \right)\\
F_{338}\! \left(x \right) &= F_{43}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{339}\! \left(x \right) &= -F_{342}\! \left(x \right)+F_{340}\! \left(x \right)\\
F_{340}\! \left(x \right) &= \frac{F_{341}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{341}\! \left(x \right) &= F_{336}\! \left(x \right)\\
F_{342}\! \left(x \right) &= F_{28}\! \left(x \right) F_{334}\! \left(x \right)\\
F_{343}\! \left(x \right) &= F_{272}\! \left(x \right) F_{310}\! \left(x \right) F_{344}\! \left(x \right)\\
F_{344}\! \left(x \right) &= \frac{F_{345}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{345}\! \left(x \right) &= F_{296}\! \left(x \right)\\
F_{346}\! \left(x \right) &= -F_{362}\! \left(x \right)+F_{347}\! \left(x \right)\\
F_{347}\! \left(x \right) &= F_{348}\! \left(x \right)\\
F_{348}\! \left(x \right) &= F_{31}\! \left(x \right) F_{349}\! \left(x \right)\\
F_{349}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{350}\! \left(x \right)\\
F_{350}\! \left(x \right) &= F_{310}\! \left(x \right) F_{351}\! \left(x \right)\\
F_{351}\! \left(x \right) &= F_{352}\! \left(x \right)+F_{360}\! \left(x \right)\\
F_{352}\! \left(x \right) &= F_{28}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{353}\! \left(x \right) &= F_{269}\! \left(x \right)+F_{354}\! \left(x \right)\\
F_{354}\! \left(x \right) &= F_{273}\! \left(x \right)+F_{355}\! \left(x \right)\\
F_{355}\! \left(x \right) &= F_{356}\! \left(x \right)+F_{357}\! \left(x \right)+F_{359}\! \left(x \right)\\
F_{356}\! \left(x \right) &= 0\\
F_{357}\! \left(x \right) &= F_{31}\! \left(x \right) F_{358}\! \left(x \right)\\
F_{358}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{355}\! \left(x \right)\\
F_{359}\! \left(x \right) &= F_{273}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{360}\! \left(x \right) &= F_{272}\! \left(x \right) F_{361}\! \left(x \right)\\
F_{361}\! \left(x \right) &= 32 x^{4} F_{361} \left(x \right)^{2}-32 \sqrt{1-4 x}\, x^{3} F_{361}\! \left(x \right)+8 x^{5}-64 x^{4} F_{361}\! \left(x \right)-8 x^{3} F_{361} \left(x \right)^{2}+32 \sqrt{1-4 x}\, x^{3}+8 \sqrt{1-4 x}\, x^{2} F_{361}\! \left(x \right)+32 x^{4}+48 x^{3} F_{361}\! \left(x \right)-24 \sqrt{1-4 x}\, x^{2}-72 x^{3}-8 x^{2} F_{361}\! \left(x \right)+4 \sqrt{1-4 x}\, x +32 x^{2}-4 x +F_{361}\! \left(x \right)\\
F_{362}\! \left(x \right) &= F_{273}\! \left(x \right) F_{363}\! \left(x \right)\\
F_{363}\! \left(x \right) &= F_{301}\! \left(x \right)+F_{310}\! \left(x \right)\\
F_{364}\! \left(x \right) &= F_{300}\! \left(x \right)\\
F_{365}\! \left(x \right) &= F_{314}\! \left(x \right) F_{366}\! \left(x \right)\\
F_{366}\! \left(x \right) &= -F_{373}\! \left(x \right)+F_{367}\! \left(x \right)\\
F_{367}\! \left(x \right) &= -F_{370}\! \left(x \right)+F_{368}\! \left(x \right)\\
F_{368}\! \left(x \right) &= \frac{F_{369}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{369}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{370}\! \left(x \right) &= -F_{373}\! \left(x \right)+F_{371}\! \left(x \right)\\
F_{371}\! \left(x \right) &= \frac{F_{372}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{372}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{373}\! \left(x \right) &= F_{374}\! \left(x \right)\\
F_{374}\! \left(x \right) &= F_{375}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{375}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{376}\! \left(x \right)\\
F_{376}\! \left(x \right) &= F_{377}\! \left(x \right)\\
F_{377}\! \left(x \right) &= F_{31}\! \left(x \right) F_{378}\! \left(x \right)\\
F_{378}\! \left(x \right) &= F_{379}\! \left(x \right)+F_{380}\! \left(x \right)\\
F_{379}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{376}\! \left(x \right)\\
F_{380}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{381}\! \left(x \right) &= -F_{124}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{382}\! \left(x \right) &= F_{383}\! \left(x \right)\\
F_{383}\! \left(x \right) &= F_{272}\! \left(x \right) F_{31}\! \left(x \right) F_{384}\! \left(x \right)\\
F_{384}\! \left(x \right) &= \frac{F_{385}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{385}\! \left(x \right) &= F_{386}\! \left(x \right)\\
F_{386}\! \left(x \right) &= -F_{395}\! \left(x \right)+F_{387}\! \left(x \right)\\
F_{387}\! \left(x \right) &= \frac{F_{388}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{388}\! \left(x \right) &= F_{389}\! \left(x \right)\\
F_{389}\! \left(x \right) &= -F_{119}\! \left(x \right)+F_{390}\! \left(x \right)\\
F_{390}\! \left(x \right) &= -F_{393}\! \left(x \right)+F_{391}\! \left(x \right)\\
F_{391}\! \left(x \right) &= \frac{F_{392}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{392}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{393}\! \left(x \right) &= F_{376}\! \left(x \right) F_{394}\! \left(x \right)\\
F_{394}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{395}\! \left(x \right) &= F_{396}\! \left(x \right)\\
F_{396}\! \left(x \right) &= F_{397}\! \left(x \right)+F_{405}\! \left(x \right)\\
F_{397}\! \left(x \right) &= F_{28}\! \left(x \right) F_{398}\! \left(x \right)\\
F_{398}\! \left(x \right) &= F_{399}\! \left(x \right)\\
F_{399}\! \left(x \right) &= F_{31}\! \left(x \right) F_{400}\! \left(x \right)\\
F_{400}\! \left(x \right) &= \frac{F_{401}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{401}\! \left(x \right) &= F_{402}\! \left(x \right)\\
F_{402}\! \left(x \right) &= F_{31}\! \left(x \right) F_{403}\! \left(x \right)\\
F_{403}\! \left(x \right) &= F_{302}\! \left(x \right)+F_{404}\! \left(x \right)\\
F_{404}\! \left(x \right) &= F_{310}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{405}\! \left(x \right) &= F_{406}\! \left(x \right) F_{408}\! \left(x \right)\\
F_{406}\! \left(x \right) &= F_{407}\! \left(x \right)\\
F_{407}\! \left(x \right) &= F_{31}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{408}\! \left(x \right) &= F_{409}\! \left(x \right)\\
F_{409}\! \left(x \right) &= F_{31}\! \left(x \right) F_{410}\! \left(x \right)\\
F_{410}\! \left(x \right) &= F_{411}\! \left(x \right)+F_{413}\! \left(x \right)\\
F_{411}\! \left(x \right) &= F_{412}\! \left(x \right)\\
F_{412}\! \left(x \right) &= F_{28}\! \left(x \right) F_{32}\! \left(x \right) F_{353}\! \left(x \right)\\
F_{413}\! \left(x \right) &= F_{272}\! \left(x \right) F_{414}\! \left(x \right)\\
F_{414}\! \left(x \right) &= \frac{F_{415}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{415}\! \left(x \right) &= -F_{466}\! \left(x \right)+F_{416}\! \left(x \right)\\
F_{416}\! \left(x \right) &= F_{417}\! \left(x \right)+F_{464}\! \left(x \right)\\
F_{417}\! \left(x \right) &= F_{418}\! \left(x \right)\\
F_{418}\! \left(x \right) &= F_{31}\! \left(x \right) F_{419}\! \left(x \right)\\
F_{419}\! \left(x \right) &= F_{420}\! \left(x \right)+F_{430}\! \left(x \right)\\
F_{420}\! \left(x \right) &= -F_{428}\! \left(x \right)+F_{421}\! \left(x \right)\\
F_{421}\! \left(x \right) &= \frac{F_{422}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{422}\! \left(x \right) &= F_{423}\! \left(x \right)\\
F_{423}\! \left(x \right) &= -F_{426}\! \left(x \right)+F_{424}\! \left(x \right)\\
F_{424}\! \left(x \right) &= \frac{F_{425}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{425}\! \left(x \right) &= F_{275}\! \left(x \right)\\
F_{426}\! \left(x \right) &= \frac{F_{427}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{427}\! \left(x \right) &= F_{119}\! \left(x \right)\\
F_{428}\! \left(x \right) &= F_{429}\! \left(x \right)\\
F_{429}\! \left(x \right) &= F_{31}\! \left(x \right) F_{394}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{430}\! \left(x \right) &= -F_{453}\! \left(x \right)+F_{431}\! \left(x \right)\\
F_{431}\! \left(x \right) &= \frac{F_{432}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{432}\! \left(x \right) &= F_{433}\! \left(x \right)\\
F_{433}\! \left(x \right) &= F_{31}\! \left(x \right) F_{434}\! \left(x \right)\\
F_{434}\! \left(x \right) &= -F_{451}\! \left(x \right)+F_{435}\! \left(x \right)\\
F_{435}\! \left(x \right) &= \frac{F_{436}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{436}\! \left(x \right) &= F_{437}\! \left(x \right)\\
F_{437}\! \left(x \right) &= -F_{440}\! \left(x \right)+F_{438}\! \left(x \right)\\
F_{438}\! \left(x \right) &= \frac{F_{439}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{439}\! \left(x \right) &= F_{82}\! \left(x \right)\\
F_{440}\! \left(x \right) &= F_{441}\! \left(x \right)\\
F_{441}\! \left(x \right) &= F_{442}\! \left(x \right)+F_{450}\! \left(x \right)\\
F_{442}\! \left(x \right) &= -F_{445}\! \left(x \right)+F_{443}\! \left(x \right)\\
F_{443}\! \left(x \right) &= \frac{F_{444}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{444}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{445}\! \left(x \right) &= -F_{448}\! \left(x \right)+F_{446}\! \left(x \right)\\
F_{446}\! \left(x \right) &= \frac{F_{447}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{447}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{448}\! \left(x \right) &= F_{449}\! \left(x \right)\\
F_{449}\! \left(x \right) &= F_{31}\! \left(x \right) F_{441}\! \left(x \right)\\
F_{450}\! \left(x \right) &= F_{28}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{451}\! \left(x \right) &= F_{452}\! \left(x \right)\\
F_{452}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{394}\! \left(x \right)\\
F_{453}\! \left(x \right) &= -F_{451}\! \left(x \right)+F_{454}\! \left(x \right)\\
F_{454}\! \left(x \right) &= \frac{F_{455}\! \left(x \right)}{F_{272}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{455}\! \left(x \right) &= F_{456}\! \left(x \right)\\
F_{456}\! \left(x \right) &= F_{381}\! \left(x \right)+F_{457}\! \left(x \right)\\
F_{457}\! \left(x \right) &= -F_{458}\! \left(x \right)+F_{318}\! \left(x \right)\\
F_{458}\! \left(x \right) &= -F_{459}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{459}\! \left(x \right) &= F_{460}\! \left(x \right)\\
F_{460}\! \left(x \right) &= -F_{42}\! \left(x \right)+F_{461}\! \left(x \right)\\
F_{461}\! \left(x \right) &= F_{462}\! \left(x \right)+F_{463}\! \left(x \right)\\
F_{462}\! \left(x \right) &= F_{28}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{463}\! \left(x \right) &= F_{28}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{464}\! \left(x \right) &= F_{465}\! \left(x \right)\\
F_{465}\! \left(x \right) &= F_{22}\! \left(x \right) F_{31}\! \left(x \right) F_{394}\! \left(x \right)\\
F_{466}\! \left(x \right) &= F_{464}\! \left(x \right)+F_{467}\! \left(x \right)\\
F_{467}\! \left(x \right) &= F_{468}\! \left(x \right)\\
F_{468}\! \left(x \right) &= F_{31}\! \left(x \right) F_{420}\! \left(x \right)\\
F_{469}\! \left(x \right) &= F_{329}\! \left(x \right)+F_{470}\! \left(x \right)\\
F_{470}\! \left(x \right) &= F_{16}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{471}\! \left(x \right) &= F_{290}\! \left(x \right)+F_{472}\! \left(x \right)\\
F_{472}\! \left(x \right) &= \frac{F_{473}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{473}\! \left(x \right) &= F_{325}\! \left(x \right)\\
F_{474}\! \left(x \right) &= F_{475}\! \left(x \right)+F_{476}\! \left(x \right)\\
F_{475}\! \left(x \right) &= F_{42}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{476}\! \left(x \right) &= F_{29}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{477}\! \left(x \right) &= -F_{495}\! \left(x \right)+F_{478}\! \left(x \right)\\
F_{478}\! \left(x \right) &= F_{479}\! \left(x \right)\\
F_{479}\! \left(x \right) &= F_{31}\! \left(x \right) F_{480}\! \left(x \right)\\
F_{480}\! \left(x \right) &= \frac{F_{481}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{481}\! \left(x \right) &= F_{482}\! \left(x \right)\\
F_{482}\! \left(x \right) &= F_{483}\! \left(x \right)+F_{484}\! \left(x \right)\\
F_{483}\! \left(x \right) &= F_{5}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{484}\! \left(x \right) &= F_{485}\! \left(x \right)\\
F_{485}\! \left(x \right) &= F_{31}\! \left(x \right) F_{486}\! \left(x \right)\\
F_{486}\! \left(x \right) &= F_{487}\! \left(x \right)+F_{492}\! \left(x \right)\\
F_{487}\! \left(x \right) &= F_{488}\! \left(x \right)+F_{490}\! \left(x \right)\\
F_{488}\! \left(x \right) &= F_{489}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{489}\! \left(x \right) &= -F_{28}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{490}\! \left(x \right) &= F_{491}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{491}\! \left(x \right) &= -F_{489}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{492}\! \left(x \right) &= F_{493}\! \left(x \right)+F_{494}\! \left(x \right)\\
F_{493}\! \left(x \right) &= F_{153}\! \left(x \right) F_{283}\! \left(x \right)\\
F_{494}\! \left(x \right) &= F_{154}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{495}\! \left(x \right) &= F_{496}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{496}\! \left(x \right) &= F_{497}\! \left(x \right)\\
F_{497}\! \left(x \right) &= F_{102}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{498}\! \left(x \right) &= F_{499}\! \left(x \right)\\
F_{499}\! \left(x \right) &= F_{31}\! \left(x \right) F_{500}\! \left(x \right)\\
F_{500}\! \left(x \right) &= F_{501}\! \left(x \right)+F_{511}\! \left(x \right)\\
F_{501}\! \left(x \right) &= F_{502}\! \left(x \right)\\
F_{502}\! \left(x \right) &= F_{31}\! \left(x \right) F_{503}\! \left(x \right)\\
F_{503}\! \left(x \right) &= F_{504}\! \left(x \right)+F_{509}\! \left(x \right)\\
F_{504}\! \left(x \right) &= F_{28}\! \left(x \right) F_{505}\! \left(x \right)\\
F_{505}\! \left(x \right) &= F_{202}\! \left(x \right)+F_{506}\! \left(x \right)\\
F_{506}\! \left(x \right) &= F_{507}\! \left(x \right)+F_{508}\! \left(x \right)\\
F_{507}\! \left(x \right) &= F_{224}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{508}\! \left(x \right) &= F_{255}\! \left(x \right)\\
F_{509}\! \left(x \right) &= F_{510}\! \left(x \right)\\
F_{510}\! \left(x \right) &= F_{162}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{511}\! \left(x \right) &= -F_{505}\! \left(x \right)+F_{512}\! \left(x \right)\\
F_{512}\! \left(x \right) &= \frac{F_{513}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{513}\! \left(x \right) &= F_{196}\! \left(x \right)\\
F_{514}\! \left(x \right) &= F_{515}\! \left(x \right)\\
F_{515}\! \left(x \right) &= F_{31}\! \left(x \right) F_{516}\! \left(x \right) F_{528}\! \left(x \right)\\
F_{516}\! \left(x \right) &= \frac{F_{517}\! \left(x \right)}{F_{394}\! \left(x \right)}\\
F_{517}\! \left(x \right) &= F_{518}\! \left(x \right)\\
F_{518}\! \left(x \right) &= -F_{526}\! \left(x \right)+F_{519}\! \left(x \right)\\
F_{519}\! \left(x \right) &= \frac{F_{520}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{520}\! \left(x \right) &= F_{521}\! \left(x \right)\\
F_{521}\! \left(x \right) &= -F_{524}\! \left(x \right)+F_{522}\! \left(x \right)\\
F_{522}\! \left(x \right) &= \frac{F_{523}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{523}\! \left(x \right) &= F_{179}\! \left(x \right)\\
F_{524}\! \left(x \right) &= \frac{F_{525}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{525}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{526}\! \left(x \right) &= F_{527}\! \left(x \right)\\
F_{527}\! \left(x \right) &= F_{28} \left(x \right)^{2} F_{165}\! \left(x \right)\\
F_{528}\! \left(x \right) &= -F_{540}\! \left(x \right)+F_{529}\! \left(x \right)\\
F_{529}\! \left(x \right) &= \frac{F_{530}\! \left(x \right)}{F_{28}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{530}\! \left(x \right) &= F_{531}\! \left(x \right)\\
F_{531}\! \left(x \right) &= -F_{534}\! \left(x \right)+F_{532}\! \left(x \right)\\
F_{532}\! \left(x \right) &= \frac{F_{533}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{533}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{534}\! \left(x \right) &= -F_{537}\! \left(x \right)+F_{535}\! \left(x \right)\\
F_{535}\! \left(x \right) &= \frac{F_{536}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{536}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{537}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{538}\! \left(x \right)\\
F_{538}\! \left(x \right) &= F_{539}\! \left(x \right)\\
F_{539}\! \left(x \right) &= F_{126}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{540}\! \left(x \right) &= F_{538}\! \left(x \right)\\
F_{541}\! \left(x \right) &= F_{542}\! \left(x \right)\\
F_{542}\! \left(x \right) &= F_{31}\! \left(x \right) F_{543}\! \left(x \right)\\
F_{543}\! \left(x \right) &= F_{544}\! \left(x \right)+F_{550}\! \left(x \right)\\
F_{544}\! \left(x \right) &= F_{44}\! \left(x \right) F_{545}\! \left(x \right)\\
F_{545}\! \left(x \right) &= F_{546}\! \left(x \right)+F_{548}\! \left(x \right)\\
F_{546}\! \left(x \right) &= F_{547}\! \left(x \right)\\
F_{547}\! \left(x \right) &= F_{28}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{548}\! \left(x \right) &= \frac{F_{549}\! \left(x \right)}{F_{28}\! \left(x \right) F_{31}\! \left(x \right)}\\
F_{549}\! \left(x \right) &= F_{491}\! \left(x \right)\\
F_{550}\! \left(x \right) &= F_{551}\! \left(x \right)\\
F_{551}\! \left(x \right) &= F_{43}\! \left(x \right) F_{552}\! \left(x \right)\\
F_{552}\! \left(x \right) &= F_{553}\! \left(x \right)\\
F_{553}\! \left(x \right) &= F_{31}\! \left(x \right) F_{43}\! \left(x \right) F_{554}\! \left(x \right)\\
F_{554}\! \left(x \right) &= \frac{F_{555}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{555}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{556}\! \left(x \right) &= F_{557}\! \left(x \right)+F_{558}\! \left(x \right)\\
F_{557}\! \left(x \right) &= F_{305}\! \left(x \right)+F_{325}\! \left(x \right)\\
F_{558}\! \left(x \right) &= F_{559}\! \left(x \right)\\
F_{559}\! \left(x \right) &= F_{31}\! \left(x \right) F_{560}\! \left(x \right)\\
F_{560}\! \left(x \right) &= F_{561}\! \left(x \right)+F_{570}\! \left(x \right)\\
F_{561}\! \left(x \right) &= F_{474}\! \left(x \right)+F_{562}\! \left(x \right)\\
F_{562}\! \left(x \right) &= F_{563}\! \left(x \right)+F_{564}\! \left(x \right)\\
F_{563}\! \left(x \right) &= F_{283}\! \left(x \right) F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{564}\! \left(x \right) &= F_{16}\! \left(x \right) F_{565}\! \left(x \right)\\
F_{565}\! \left(x \right) &= -F_{569}\! \left(x \right)+F_{566}\! \left(x \right)\\
F_{566}\! \left(x \right) &= F_{567}\! \left(x \right)\\
F_{567}\! \left(x \right) &= F_{31}\! \left(x \right) F_{568}\! \left(x \right)\\
F_{568}\! \left(x \right) &= F_{334}\! \left(x \right)\\
F_{569}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{570}\! \left(x \right) &= -F_{571}\! \left(x \right)+F_{486}\! \left(x \right)\\
F_{571}\! \left(x \right) &= F_{572}\! \left(x \right)+F_{574}\! \left(x \right)\\
F_{572}\! \left(x \right) &= F_{283}\! \left(x \right) F_{573}\! \left(x \right)\\
F_{573}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{569}\! \left(x \right)\\
F_{574}\! \left(x \right) &= F_{16}\! \left(x \right) F_{575}\! \left(x \right)\\
F_{575}\! \left(x \right) &= -F_{573}\! \left(x \right)+F_{576}\! \left(x \right)\\
F_{576}\! \left(x \right) &= F_{325}\! \left(x \right)+F_{566}\! \left(x \right)\\
F_{577}\! \left(x \right) &= F_{578}\! \left(x \right)\\
F_{578}\! \left(x \right) &= F_{31}\! \left(x \right) F_{579}\! \left(x \right)\\
F_{579}\! \left(x \right) &= F_{580}\! \left(x \right)+F_{582}\! \left(x \right)\\
F_{580}\! \left(x \right) &= \frac{F_{581}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{581}\! \left(x \right) &= F_{576}\! \left(x \right)\\
F_{582}\! \left(x \right) &= F_{583}\! \left(x \right)+F_{631}\! \left(x \right)\\
F_{583}\! \left(x \right) &= F_{584}\! \left(x \right)\\
F_{584}\! \left(x \right) &= F_{31}\! \left(x \right) F_{585}\! \left(x \right)\\
F_{585}\! \left(x \right) &= F_{586}\! \left(x \right)+F_{629}\! \left(x \right)\\
F_{586}\! \left(x \right) &= \frac{F_{587}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{587}\! \left(x \right) &= F_{588}\! \left(x \right)\\
F_{588}\! \left(x \right) &= F_{568}\! \left(x \right)+F_{589}\! \left(x \right)\\
F_{589}\! \left(x \right) &= -F_{599}\! \left(x \right)+F_{590}\! \left(x \right)\\
F_{590}\! \left(x \right) &= -F_{594}\! \left(x \right)+F_{591}\! \left(x \right)\\
F_{591}\! \left(x \right) &= \frac{F_{592}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{592}\! \left(x \right) &= F_{593}\! \left(x \right)\\
F_{593}\! \left(x \right) &= -F_{271}\! \left(x \right)+F_{496}\! \left(x \right)\\
F_{594}\! \left(x \right) &= F_{595}\! \left(x \right)\\
F_{595}\! \left(x \right) &= F_{29}\! \left(x \right) F_{31}\! \left(x \right) F_{596}\! \left(x \right)\\
F_{596}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{597}\! \left(x \right)\\
F_{597}\! \left(x \right) &= F_{598}\! \left(x \right)\\
F_{598}\! \left(x \right) &= F_{272}\! \left(x \right) F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{596}\! \left(x \right)\\
F_{599}\! \left(x \right) &= F_{600}\! \left(x \right)\\
F_{600}\! \left(x \right) &= F_{28}\! \left(x \right) F_{31}\! \left(x \right) F_{601}\! \left(x \right)\\
F_{601}\! \left(x \right) &= F_{602}\! \left(x \right)\\
F_{602}\! \left(x \right) &= F_{31}\! \left(x \right) F_{603}\! \left(x \right)\\
F_{603}\! \left(x \right) &= -F_{627}\! \left(x \right)+F_{604}\! \left(x \right)\\
F_{604}\! \left(x \right) &= \frac{F_{605}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{605}\! \left(x \right) &= F_{606}\! \left(x \right)\\
F_{606}\! \left(x \right) &= -F_{609}\! \left(x \right)+F_{607}\! \left(x \right)\\
F_{607}\! \left(x \right) &= \frac{F_{608}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{608}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{609}\! \left(x \right) &= -F_{613}\! \left(x \right)+F_{610}\! \left(x \right)\\
F_{610}\! \left(x \right) &= \frac{F_{611}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{611}\! \left(x \right) &= F_{612}\! \left(x \right)\\
F_{612}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{613}\! \left(x \right) &= -F_{617}\! \left(x \right)+F_{614}\! \left(x \right)\\
F_{614}\! \left(x \right) &= \frac{F_{615}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{615}\! \left(x \right) &= F_{616}\! \left(x \right)\\
F_{616}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{617}\! \left(x \right) &= F_{618}\! \left(x \right)\\
F_{618}\! \left(x \right) &= F_{31}\! \left(x \right) F_{619}\! \left(x \right)\\
F_{619}\! \left(x \right) &= F_{620}\! \left(x \right)+F_{625}\! \left(x \right)\\
F_{620}\! \left(x \right) &= \frac{F_{621}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{621}\! \left(x \right) &= F_{622}\! \left(x \right)\\
F_{622}\! \left(x \right) &= -F_{335}\! \left(x \right)+F_{623}\! \left(x \right)\\
F_{623}\! \left(x \right) &= \frac{F_{624}\! \left(x \right)}{F_{31}\! \left(x \right)}\\
F_{624}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{625}\! \left(x \right) &= F_{626}\! \left(x \right)\\
F_{626}\! \left(x \right) &= F_{596}\! \left(x \right) F_{606}\! \left(x \right)\\
F_{627}\! \left(x \right) &= F_{628}\! \left(x \right)\\
F_{628}\! \left(x \right) &= F_{528} \left(x \right)^{2} F_{31}\! \left(x \right)\\
F_{629}\! \left(x \right) &= F_{630}\! \left(x \right)\\
F_{630}\! \left(x \right) &= F_{28}\! \left(x \right) F_{601}\! \left(x \right)\\
F_{631}\! \left(x \right) &= -F_{457}\! \left(x \right)+F_{290}\! \left(x \right)\\
\end{align*}\)