Av(12435, 12453, 12543, 14235, 14253, 14523, 15243, 15423, 41235, 41253, 41523)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 109, 522, 2557, 12664, 63106, 315638, 1582498, 7946510, 39945020, 200934762, ...

This specification was found using the strategy pack "Point And Col Placements Tracked Fusion Tracked Component Fusion Req Corrob" and has 102 rules.

Finding the specification took 4939 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 102 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= 0\\ F_{7}\! \left(x \right) &= F_{18}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{100}\! \left(x \right)+F_{52}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{25}\! \left(x \right)+F_{50}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= x\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{0}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= x^{2} F_{23} \left(x \right)^{2}-2 x F_{23} \left(x \right)^{2}+x F_{23}\! \left(x \right)+2 F_{23}\! \left(x \right)-1\\ F_{24}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x , 1\right)\\ F_{26}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{31}\! \left(x , y\right)+F_{32}\! \left(x , y\right)+F_{34}\! \left(x , y\right)+F_{6}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right) F_{30}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{15}\! \left(x \right)+F_{27}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= y x\\ F_{31}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\ F_{32}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{33}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= -\frac{y \left(F_{27}\! \left(x , 1\right)-F_{27}\! \left(x , y\right)\right)}{-1+y}\\ F_{34}\! \left(x , y\right) &= F_{35}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{36}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{37}\! \left(x , y\right)+F_{46}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{6}\! \left(x \right)\\ F_{37}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{38}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{18}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{18}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{36}\! \left(x , 1\right)\\ F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , y\right)\\ F_{47}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{36}\! \left(x , y\right)\\ F_{48}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{49}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= -\frac{y \left(F_{36}\! \left(x , 1\right)-F_{36}\! \left(x , y\right)\right)}{-1+y}\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{18}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x , 1\right)\\ F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)+F_{58}\! \left(x , y\right)+F_{59}\! \left(x , y\right)+F_{6}\! \left(x \right)+F_{61}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{57}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{58}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{60}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= -\frac{y \left(F_{55}\! \left(x , 1\right)-F_{55}\! \left(x , y\right)\right)}{-1+y}\\ F_{61}\! \left(x , y\right) &= F_{62}\! \left(x , y\right)\\ F_{62}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= 2 F_{6}\! \left(x \right)+F_{64}\! \left(x , y\right)+F_{96}\! \left(x , y\right)+F_{98}\! \left(x , y\right)\\ F_{64}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{65}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{63}\! \left(x , y\right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{18}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{18}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{52}\! \left(x \right)+F_{71}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{18}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{18}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{76}\! \left(x \right)+F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{18}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= 2 F_{6}\! \left(x \right)+F_{80}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{18}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{0}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{18}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{63}\! \left(x , 1\right)\\ F_{86}\! \left(x \right) &= F_{18}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{18}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x , 1\right)\\ F_{89}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)+F_{6}\! \left(x \right)+F_{90}\! \left(x , y\right)+F_{92}\! \left(x , y\right)+F_{94}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{91}\! \left(x , y\right)\\ F_{91}\! \left(x , y\right) &= F_{74}\! \left(x \right)+F_{89}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{93}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{95}\! \left(x , y\right)\\ F_{95}\! \left(x , y\right) &= -\frac{y \left(F_{89}\! \left(x , 1\right)-F_{89}\! \left(x , y\right)\right)}{-1+y}\\ F_{96}\! \left(x , y\right) &= F_{97}\! \left(x , y\right)\\ F_{97}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{18}\! \left(x \right) F_{36}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= F_{18}\! \left(x \right) F_{99}\! \left(x , y\right)\\ F_{99}\! \left(x , y\right) &= -\frac{y \left(F_{63}\! \left(x , 1\right)-F_{63}\! \left(x , y\right)\right)}{-1+y}\\ F_{100}\! \left(x \right) &= F_{18}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{18}\! \left(x \right) F_{75}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Untracked Component Fusion Req Corrob" and has 229 rules.

Finding the specification took 50 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 229 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{16}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{226}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{16}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{222}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{16}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{175}\! \left(x \right)+F_{180}\! \left(x \right)+F_{217}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{16}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{156}\! \left(x \right)+F_{165}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x , 1\right)\\ F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{154}\! \left(x , y\right)+F_{156}\! \left(x \right)+F_{158}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)+F_{19}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= x\\ F_{17}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= -\frac{-F_{14}\! \left(x , y\right) y +F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{21}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)+F_{153}\! \left(x , y\right)+F_{22}\! \left(x , y\right)+F_{3}\! \left(x \right)\\ F_{22}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{23}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{150}\! \left(x , y\right)+F_{24}\! \left(x , y\right)+F_{26}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{23}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= y x\\ F_{26}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{148}\! \left(x , y\right)+F_{149}\! \left(x \right)+F_{28}\! \left(x , y\right)+F_{76}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{29}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{30}\! \left(x \right)+F_{48}\! \left(x , y\right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{16}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{16}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{16}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{43}\! \left(x \right) &= 0\\ F_{44}\! \left(x \right) &= F_{16}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{16}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{48}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)+F_{75}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)+F_{53}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x , y\right)\\ F_{51}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{52}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{50}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{43}\! \left(x \right)+F_{54}\! \left(x , y\right)+F_{56}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{55}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{32}\! \left(x \right)+F_{53}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{57}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)+F_{63}\! \left(x , y\right)\\ F_{58}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{43}\! \left(x \right)+F_{60}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{61}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{36}\! \left(x \right)+F_{59}\! \left(x , y\right)\\ F_{62}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{58}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{64}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\ F_{64}\! \left(x , y\right) &= F_{43}\! \left(x \right)+F_{65}\! \left(x , y\right)+F_{67}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{66}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{39}\! \left(x \right)+F_{64}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{68}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)+F_{64}\! \left(x , y\right)\\ F_{69}\! \left(x , y\right) &= F_{43}\! \left(x \right)+F_{70}\! \left(x , y\right)+F_{72}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\ F_{70}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{71}\! \left(x , y\right)\\ F_{71}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{69}\! \left(x , y\right)\\ F_{72}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{73}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{59}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{63}\! \left(x , y\right)\\ F_{75}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)\\ F_{76}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{77}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{116}\! \left(x , y\right)+F_{117}\! \left(x , y\right)+F_{78}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{77}\! \left(x , y\right)\\ F_{79}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{80}\! \left(x , y\right)\\ F_{80}\! \left(x , y\right) &= -\frac{-F_{81}\! \left(x , y\right) y +F_{81}\! \left(x , 1\right)}{-1+y}\\ F_{81}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{116}\! \left(x , y\right)+F_{79}\! \left(x , y\right)+F_{82}\! \left(x , y\right)+F_{94}\! \left(x \right)\\ F_{82}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{83}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{116}\! \left(x , y\right)+F_{82}\! \left(x , y\right)+F_{84}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{85}\! \left(x , y\right)\\ F_{86}\! \left(x , y\right) &= F_{25}\! \left(x , y\right) F_{85}\! \left(x , y\right)\\ F_{80}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{86}\! \left(x , y\right)+F_{87}\! \left(x \right)+F_{89}\! \left(x , y\right)+F_{91}\! \left(x , y\right)+F_{94}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{16}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{83}\! \left(x , 1\right)\\ F_{89}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= -\frac{-F_{80}\! \left(x , y\right) y +F_{80}\! \left(x , 1\right)}{-1+y}\\ F_{91}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{92}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{93}\! \left(x , y , 1\right)\\ F_{93}\! \left(x , y , z\right) &= \frac{F_{77}\! \left(x , y\right) y -F_{77}\! \left(x , z\right) z}{-z +y}\\ F_{94}\! \left(x \right) &= F_{16}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{43}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{109}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{107}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{112}\! \left(x \right)+F_{114}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{103}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{98}\! \left(x \right)\\ F_{116}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{77}\! \left(x , y\right)\\ F_{117}\! \left(x , y\right) &= F_{118}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{118}\! \left(x , y\right) &= F_{119}\! \left(x , y\right)+F_{95}\! \left(x \right)\\ F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right)+F_{48}\! \left(x , y\right)\\ F_{120}\! \left(x , y\right) &= F_{121}\! \left(x , y\right)+F_{147}\! \left(x , y\right)\\ F_{121}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{125}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= F_{123}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{124}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{124}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{50}\! \left(x , y\right)\\ F_{125}\! \left(x , y\right) &= 2 F_{43}\! \left(x \right)+F_{126}\! \left(x , y\right)+F_{128}\! \left(x , y\right)\\ F_{126}\! \left(x , y\right) &= F_{127}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{127}\! \left(x , y\right) &= F_{125}\! \left(x , y\right)+F_{53}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{129}\! \left(x , y\right) &= F_{130}\! \left(x , y\right)+F_{135}\! \left(x , y\right)\\ F_{130}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{131}\! \left(x , y\right)\\ F_{131}\! \left(x , y\right) &= 2 F_{43}\! \left(x \right)+F_{132}\! \left(x , y\right)+F_{134}\! \left(x , y\right)\\ F_{132}\! \left(x , y\right) &= F_{133}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{133}\! \left(x , y\right) &= F_{131}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\ F_{134}\! \left(x , y\right) &= F_{130}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{135}\! \left(x , y\right) &= F_{136}\! \left(x , y\right)+F_{141}\! \left(x , y\right)\\ F_{136}\! \left(x , y\right) &= 2 F_{43}\! \left(x \right)+F_{137}\! \left(x , y\right)+F_{139}\! \left(x , y\right)\\ F_{137}\! \left(x , y\right) &= F_{138}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{138}\! \left(x , y\right) &= F_{136}\! \left(x , y\right)+F_{64}\! \left(x , y\right)\\ F_{139}\! \left(x , y\right) &= F_{140}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{140}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{136}\! \left(x , y\right)\\ F_{141}\! \left(x , y\right) &= 2 F_{43}\! \left(x \right)+F_{142}\! \left(x , y\right)+F_{144}\! \left(x , y\right)+F_{146}\! \left(x , y\right)\\ F_{142}\! \left(x , y\right) &= F_{143}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{143}\! \left(x , y\right) &= F_{141}\! \left(x , y\right)+F_{69}\! \left(x , y\right)\\ F_{144}\! \left(x , y\right) &= F_{145}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{145}\! \left(x , y\right) &= F_{131}\! \left(x , y\right)+F_{141}\! \left(x , y\right)\\ F_{146}\! \left(x , y\right) &= F_{135}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{147}\! \left(x , y\right) &= F_{125}\! \left(x , y\right)\\ F_{148}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{80}\! \left(x , y\right)\\ F_{149}\! \left(x \right) &= F_{16}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{150}\! \left(x , y\right) &= F_{151}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{151}\! \left(x , y\right) &= -\frac{-F_{23}\! \left(x , y\right) y +F_{23}\! \left(x , 1\right)}{-1+y}\\ F_{152}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{16}\! \left(x \right) F_{27}\! \left(x , y\right)\\ F_{153}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{151}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{154}\! \left(x , y\right) &= F_{155}\! \left(x , y\right) F_{16}\! \left(x \right)\\ F_{155}\! \left(x , y\right) &= -\frac{-F_{12}\! \left(x , y\right) y +F_{12}\! \left(x , 1\right)}{-1+y}\\ F_{156}\! \left(x \right) &= F_{157}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{157}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{158}\! \left(x , y\right) &= F_{159}\! \left(x , y\right)\\ F_{159}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{160}\! \left(x , y\right)\\ F_{160}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)+F_{161}\! \left(x , y\right)+F_{163}\! \left(x \right)+F_{22}\! \left(x , y\right)+F_{3}\! \left(x \right)\\ F_{161}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{16}\! \left(x \right) F_{162}\! \left(x , y\right)\\ F_{162}\! \left(x , y\right) &= -\frac{-F_{27}\! \left(x , y\right) y +F_{27}\! \left(x , 1\right)}{-1+y}\\ F_{163}\! \left(x \right) &= F_{0}\! \left(x \right) F_{16}\! \left(x \right) F_{164}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{23}\! \left(x , 1\right)\\ F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\ F_{166}\! \left(x \right) &= F_{16}\! \left(x \right) F_{167}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{163}\! \left(x \right)+F_{168}\! \left(x \right)+F_{174}\! \left(x \right)+F_{3}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{0}\! \left(x \right) F_{16}\! \left(x \right) F_{169}\! \left(x \right)\\ F_{169}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{170}\! \left(x \right)+F_{171}\! \left(x \right)+F_{173}\! \left(x \right)\\ F_{170}\! \left(x \right) &= F_{16}\! \left(x \right) F_{169}\! \left(x \right)\\ F_{171}\! \left(x \right) &= F_{16}\! \left(x \right) F_{172}\! \left(x \right)\\ F_{172}\! \left(x \right) &= F_{27}\! \left(x , 1\right)\\ F_{173}\! \left(x \right) &= F_{16}\! \left(x \right) F_{164}\! \left(x \right)\\ F_{174}\! \left(x \right) &= F_{0}\! \left(x \right) F_{16}\! \left(x \right) F_{172}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{16}\! \left(x \right) F_{176}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{177}\! \left(x , 1\right)\\ F_{177}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{178}\! \left(x , y\right)+F_{180}\! \left(x \right)+F_{213}\! \left(x , y\right)\\ F_{178}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{179}\! \left(x , y\right)\\ F_{179}\! \left(x , y\right) &= -\frac{-F_{177}\! \left(x , y\right) y +F_{177}\! \left(x , 1\right)}{-1+y}\\ F_{180}\! \left(x \right) &= F_{16}\! \left(x \right) F_{181}\! \left(x \right)\\ F_{181}\! \left(x \right) &= F_{182}\! \left(x , 1\right)\\ F_{182}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{183}\! \left(x , y\right)+F_{184}\! \left(x , y\right)+F_{185}\! \left(x , y\right)+F_{187}\! \left(x , y\right)\\ F_{183}\! \left(x , y\right) &= F_{182}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{184}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{177}\! \left(x , y\right)\\ F_{185}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{186}\! \left(x , y\right)\\ F_{186}\! \left(x , y\right) &= -\frac{-F_{182}\! \left(x , y\right) y +F_{182}\! \left(x , 1\right)}{-1+y}\\ F_{187}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{188}\! \left(x , y\right)\\ F_{188}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{189}\! \left(x , y\right)+F_{191}\! \left(x , y\right)+F_{202}\! \left(x \right)+F_{211}\! \left(x , y\right)\\ F_{189}\! \left(x , y\right) &= F_{190}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{190}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{189}\! \left(x , y\right)+F_{191}\! \left(x , y\right)+F_{199}\! \left(x \right)+F_{209}\! \left(x , y\right)\\ F_{191}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{192}\! \left(x , y\right)\\ F_{192}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{193}\! \left(x , y\right)+F_{194}\! \left(x , y\right)+F_{195}\! \left(x , y\right)+F_{197}\! \left(x \right)+F_{199}\! \left(x \right)\\ F_{193}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\ F_{194}\! \left(x , y\right) &= F_{152}\! \left(x , y\right)\\ F_{195}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{196}\! \left(x , y\right)\\ F_{196}\! \left(x , y\right) &= -\frac{-F_{192}\! \left(x , y\right) y +F_{192}\! \left(x , 1\right)}{-1+y}\\ F_{197}\! \left(x \right) &= F_{16}\! \left(x \right) F_{198}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{190}\! \left(x , 1\right)\\ F_{199}\! \left(x \right) &= F_{16}\! \left(x \right) F_{200}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{201}\! \left(x \right)+F_{202}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{16}\! \left(x \right) F_{200}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{16}\! \left(x \right) F_{203}\! \left(x \right)\\ F_{203}\! \left(x \right) &= F_{204}\! \left(x , 1\right)\\ F_{204}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{185}\! \left(x , y\right)+F_{205}\! \left(x , y\right)+F_{206}\! \left(x , y\right)+F_{207}\! \left(x , y\right)\\ F_{205}\! \left(x , y\right) &= F_{204}\! \left(x , y\right) F_{25}\! \left(x , y\right)\\ F_{206}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{188}\! \left(x , y\right)\\ F_{207}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{208}\! \left(x , y\right)\\ F_{208}\! \left(x , y\right) &= -\frac{-F_{204}\! \left(x , y\right) y +F_{204}\! \left(x , 1\right)}{-1+y}\\ F_{209}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{210}\! \left(x , y\right)\\ F_{210}\! \left(x , y\right) &= -\frac{-F_{190}\! \left(x , y\right) y +F_{190}\! \left(x , 1\right)}{-1+y}\\ F_{211}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{212}\! \left(x , y\right)\\ F_{212}\! \left(x , y\right) &= -\frac{-y F_{188}\! \left(x , y\right)+F_{188}\! \left(x , 1\right)}{-1+y}\\ F_{213}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{214}\! \left(x , y\right)\\ F_{214}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{193}\! \left(x , y\right)+F_{194}\! \left(x , y\right)+F_{195}\! \left(x , y\right)+F_{202}\! \left(x \right)+F_{215}\! \left(x \right)\\ F_{215}\! \left(x \right) &= F_{16}\! \left(x \right) F_{216}\! \left(x \right)\\ F_{216}\! \left(x \right) &= F_{188}\! \left(x , 1\right)\\ F_{217}\! \left(x \right) &= F_{16}\! \left(x \right) F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{202}\! \left(x \right)+F_{215}\! \left(x \right)+F_{219}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{168}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{16}\! \left(x \right) F_{221}\! \left(x \right)\\ F_{221}\! \left(x \right) &= F_{192}\! \left(x , 1\right)\\ F_{222}\! \left(x \right) &= F_{16}\! \left(x \right) F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{202}\! \left(x \right)+F_{215}\! \left(x \right)+F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{16}\! \left(x \right) F_{225}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{197}\! \left(x \right)+F_{199}\! \left(x \right)+F_{219}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{16}\! \left(x \right) F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{180}\! \left(x \right)+F_{202}\! \left(x \right)+F_{228}\! \left(x \right)\\ F_{228}\! \left(x \right) &= F_{16}\! \left(x \right) F_{223}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Tracked Fusion Tracked Component Fusion Req Corrob" and has 228 rules.

Finding the specification took 5375 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 228 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{17}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{225}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{221}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{169}\! \left(x \right)+F_{174}\! \left(x \right)+F_{217}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{17}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{148}\! \left(x \right)+F_{157}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x , 1\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{12}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{146}\! \left(x , y\right)+F_{148}\! \left(x \right)+F_{150}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{15}\! \left(x , y\right)+F_{18}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{16}\! \left(x , y\right) &= -\frac{-F_{14}\! \left(x , y\right) y +F_{14}\! \left(x , 1\right)}{-1+y}\\ F_{17}\! \left(x \right) &= x\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{144}\! \left(x , y\right)+F_{145}\! \left(x , y\right)+F_{21}\! \left(x , y\right)+F_{3}\! \left(x \right)\\ F_{21}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{22}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{142}\! \left(x , y\right)+F_{23}\! \left(x , y\right)+F_{25}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{22}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= y x\\ F_{25}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{26}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{139}\! \left(x , y\right)+F_{140}\! \left(x \right)+F_{27}\! \left(x , y\right)+F_{75}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{28}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{29}\! \left(x \right)+F_{47}\! \left(x , y\right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{17}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{17}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{17}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= 0\\ F_{43}\! \left(x \right) &= F_{17}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{17}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{47}\! \left(x , y\right) &= F_{48}\! \left(x , y\right)+F_{74}\! \left(x , y\right)\\ F_{48}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)+F_{52}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{50}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{51}\! \left(x , y\right)\\ F_{51}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{53}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{31}\! \left(x \right)+F_{52}\! \left(x , y\right)\\ F_{55}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{57}\! \left(x , y\right)+F_{62}\! \left(x , y\right)\\ F_{57}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\ F_{58}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{59}\! \left(x , y\right)+F_{61}\! \left(x , y\right)\\ F_{59}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{60}\! \left(x , y\right)\\ F_{60}\! \left(x , y\right) &= F_{35}\! \left(x \right)+F_{58}\! \left(x , y\right)\\ F_{61}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{57}\! \left(x , y\right)\\ F_{62}\! \left(x , y\right) &= F_{63}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\ F_{63}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{64}\! \left(x , y\right)+F_{66}\! \left(x , y\right)\\ F_{64}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{65}\! \left(x , y\right)\\ F_{65}\! \left(x , y\right) &= F_{38}\! \left(x \right)+F_{63}\! \left(x , y\right)\\ F_{66}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{67}\! \left(x , y\right)\\ F_{67}\! \left(x , y\right) &= F_{49}\! \left(x , y\right)+F_{63}\! \left(x , y\right)\\ F_{68}\! \left(x , y\right) &= F_{42}\! \left(x \right)+F_{69}\! \left(x , y\right)+F_{71}\! \left(x , y\right)+F_{73}\! \left(x , y\right)\\ F_{69}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{70}\! \left(x , y\right)\\ F_{70}\! \left(x , y\right) &= F_{41}\! \left(x \right)+F_{68}\! \left(x , y\right)\\ F_{71}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{72}\! \left(x , y\right)\\ F_{72}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\ F_{73}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{62}\! \left(x , y\right)\\ F_{74}\! \left(x , y\right) &= F_{52}\! \left(x , y\right)\\ F_{75}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{76}\! \left(x , y\right)\\ F_{76}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{108}\! \left(x , y\right)+F_{77}\! \left(x , y\right)+F_{78}\! \left(x , y\right)+F_{85}\! \left(x , y\right)\\ F_{77}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{76}\! \left(x , y\right)\\ F_{78}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{79}\! \left(x , y\right)\\ F_{79}\! \left(x , y\right) &= -\frac{-F_{80}\! \left(x , y\right) y +F_{80}\! \left(x , 1\right)}{-1+y}\\ F_{80}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{78}\! \left(x , y\right)+F_{81}\! \left(x , y\right)+F_{85}\! \left(x , y\right)+F_{86}\! \left(x \right)\\ F_{81}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{82}\! \left(x , y\right)\\ F_{82}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{81}\! \left(x , y\right)+F_{83}\! \left(x , y\right)+F_{85}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{84}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= -\frac{-F_{82}\! \left(x , y\right) y +F_{82}\! \left(x , 1\right)}{-1+y}\\ F_{85}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{76}\! \left(x , y\right)\\ F_{86}\! \left(x \right) &= F_{17}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{91}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{17}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{17}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{97}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{17}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{104}\! \left(x \right)+F_{106}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{17}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{108}\! \left(x , y\right) &= F_{109}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{109}\! \left(x , y\right) &= F_{110}\! \left(x , y\right)+F_{87}\! \left(x \right)\\ F_{110}\! \left(x , y\right) &= F_{111}\! \left(x , y\right)+F_{47}\! \left(x , y\right)\\ F_{111}\! \left(x , y\right) &= F_{112}\! \left(x , y\right)+F_{138}\! \left(x , y\right)\\ F_{112}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{116}\! \left(x , y\right)\\ F_{113}\! \left(x , y\right) &= F_{114}\! \left(x , y\right)\\ F_{114}\! \left(x , y\right) &= F_{115}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{115}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{49}\! \left(x , y\right)\\ F_{116}\! \left(x , y\right) &= 2 F_{42}\! \left(x \right)+F_{117}\! \left(x , y\right)+F_{119}\! \left(x , y\right)\\ F_{117}\! \left(x , y\right) &= F_{118}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{118}\! \left(x , y\right) &= F_{116}\! \left(x , y\right)+F_{52}\! \left(x , y\right)\\ F_{119}\! \left(x , y\right) &= F_{120}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{120}\! \left(x , y\right) &= F_{121}\! \left(x , y\right)+F_{126}\! \left(x , y\right)\\ F_{121}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{122}\! \left(x , y\right)\\ F_{122}\! \left(x , y\right) &= 2 F_{42}\! \left(x \right)+F_{123}\! \left(x , y\right)+F_{125}\! \left(x , y\right)\\ F_{123}\! \left(x , y\right) &= F_{124}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{124}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{58}\! \left(x , y\right)\\ F_{125}\! \left(x , y\right) &= F_{121}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{126}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)+F_{132}\! \left(x , y\right)\\ F_{127}\! \left(x , y\right) &= 2 F_{42}\! \left(x \right)+F_{128}\! \left(x , y\right)+F_{130}\! \left(x , y\right)\\ F_{128}\! \left(x , y\right) &= F_{129}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{129}\! \left(x , y\right) &= F_{127}\! \left(x , y\right)+F_{63}\! \left(x , y\right)\\ F_{130}\! \left(x , y\right) &= F_{131}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{131}\! \left(x , y\right) &= F_{113}\! \left(x , y\right)+F_{127}\! \left(x , y\right)\\ F_{132}\! \left(x , y\right) &= 2 F_{42}\! \left(x \right)+F_{133}\! \left(x , y\right)+F_{135}\! \left(x , y\right)+F_{137}\! \left(x , y\right)\\ F_{133}\! \left(x , y\right) &= F_{134}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{134}\! \left(x , y\right) &= F_{132}\! \left(x , y\right)+F_{68}\! \left(x , y\right)\\ F_{135}\! \left(x , y\right) &= F_{136}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{136}\! \left(x , y\right) &= F_{122}\! \left(x , y\right)+F_{132}\! \left(x , y\right)\\ F_{137}\! \left(x , y\right) &= F_{126}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{138}\! \left(x , y\right) &= F_{116}\! \left(x , y\right)\\ F_{139}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{79}\! \left(x , y\right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{82}\! \left(x , 1\right)\\ F_{142}\! \left(x , y\right) &= F_{143}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{143}\! \left(x , y\right) &= -\frac{-F_{22}\! \left(x , y\right) y +F_{22}\! \left(x , 1\right)}{-1+y}\\ F_{144}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{26}\! \left(x , y\right)\\ F_{145}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{143}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{146}\! \left(x , y\right) &= F_{147}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{147}\! \left(x , y\right) &= -\frac{-y F_{12}\! \left(x , y\right)+F_{12}\! \left(x , 1\right)}{-1+y}\\ F_{148}\! \left(x \right) &= F_{149}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\ F_{150}\! \left(x , y\right) &= F_{151}\! \left(x , y\right)\\ F_{151}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{152}\! \left(x , y\right) &= F_{144}\! \left(x , y\right)+F_{153}\! \left(x , y\right)+F_{155}\! \left(x \right)+F_{21}\! \left(x , y\right)+F_{3}\! \left(x \right)\\ F_{153}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{154}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{154}\! \left(x , y\right) &= -\frac{-F_{26}\! \left(x , y\right) y +F_{26}\! \left(x , 1\right)}{-1+y}\\ F_{155}\! \left(x \right) &= F_{0}\! \left(x \right) F_{156}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{156}\! \left(x \right) &= F_{22}\! \left(x , 1\right)\\ F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)\\ F_{158}\! \left(x \right) &= F_{159}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{159}\! \left(x \right) &= F_{155}\! \left(x \right)+F_{160}\! \left(x \right)+F_{168}\! \left(x \right)+F_{3}\! \left(x \right)\\ F_{160}\! \left(x \right) &= F_{0}\! \left(x \right) F_{161}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{161}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{140}\! \left(x \right)+F_{162}\! \left(x \right)+F_{167}\! \left(x \right)\\ F_{162}\! \left(x \right) &= F_{163}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{163}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{164}\! \left(x \right)+F_{166}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{164}\! \left(x \right) &= F_{165}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{165}\! \left(x \right) &= F_{80}\! \left(x , 1\right)\\ F_{166}\! \left(x \right) &= F_{163}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{167}\! \left(x \right) &= F_{165}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{168}\! \left(x \right) &= F_{144}\! \left(x , 1\right)\\ F_{169}\! \left(x \right) &= F_{170}\! \left(x , 1\right)\\ F_{170}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{171}\! \left(x , y\right)\\ F_{171}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{172}\! \left(x , y\right)+F_{174}\! \left(x \right)+F_{215}\! \left(x , y\right)\\ F_{172}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{173}\! \left(x , y\right)\\ F_{173}\! \left(x , y\right) &= -\frac{-F_{171}\! \left(x , y\right) y +F_{171}\! \left(x , 1\right)}{-1+y}\\ F_{174}\! \left(x \right) &= F_{17}\! \left(x \right) F_{175}\! \left(x \right)\\ F_{175}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{169}\! \left(x \right)+F_{176}\! \left(x \right)+F_{177}\! \left(x \right)+F_{214}\! \left(x \right)\\ F_{176}\! \left(x \right) &= F_{17}\! \left(x \right) F_{175}\! \left(x \right)\\ F_{177}\! \left(x \right) &= F_{17}\! \left(x \right) F_{178}\! \left(x \right)\\ F_{178}\! \left(x \right) &= F_{179}\! \left(x , 1\right)\\ F_{179}\! \left(x , y\right) &= -\frac{-F_{180}\! \left(x , y\right) y +F_{180}\! \left(x , 1\right)}{-1+y}\\ F_{180}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{170}\! \left(x , y\right)+F_{181}\! \left(x , y\right)+F_{182}\! \left(x , y\right)+F_{183}\! \left(x , y\right)\\ F_{181}\! \left(x , y\right) &= F_{180}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{182}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{179}\! \left(x , y\right)\\ F_{183}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{184}\! \left(x , y\right)\\ F_{184}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{185}\! \left(x , y\right)+F_{187}\! \left(x , y\right)+F_{198}\! \left(x \right)+F_{212}\! \left(x , y\right)\\ F_{185}\! \left(x , y\right) &= F_{186}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{186}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{185}\! \left(x , y\right)+F_{187}\! \left(x , y\right)+F_{195}\! \left(x \right)+F_{210}\! \left(x , y\right)\\ F_{187}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{188}\! \left(x , y\right)\\ F_{188}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{189}\! \left(x , y\right)+F_{190}\! \left(x , y\right)+F_{191}\! \left(x , y\right)+F_{193}\! \left(x \right)+F_{195}\! \left(x \right)\\ F_{189}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)\\ F_{190}\! \left(x , y\right) &= F_{144}\! \left(x , y\right)\\ F_{191}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{192}\! \left(x , y\right)\\ F_{192}\! \left(x , y\right) &= -\frac{-F_{188}\! \left(x , y\right) y +F_{188}\! \left(x , 1\right)}{-1+y}\\ F_{193}\! \left(x \right) &= F_{17}\! \left(x \right) F_{194}\! \left(x \right)\\ F_{194}\! \left(x \right) &= F_{186}\! \left(x , 1\right)\\ F_{195}\! \left(x \right) &= F_{17}\! \left(x \right) F_{196}\! \left(x \right)\\ F_{196}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{197}\! \left(x \right)+F_{198}\! \left(x \right)\\ F_{197}\! \left(x \right) &= F_{17}\! \left(x \right) F_{196}\! \left(x \right)\\ F_{198}\! \left(x \right) &= F_{17}\! \left(x \right) F_{199}\! \left(x \right)\\ F_{199}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{177}\! \left(x \right)+F_{200}\! \left(x \right)+F_{201}\! \left(x \right)+F_{203}\! \left(x \right)\\ F_{200}\! \left(x \right) &= F_{17}\! \left(x \right) F_{199}\! \left(x \right)\\ F_{201}\! \left(x \right) &= F_{17}\! \left(x \right) F_{202}\! \left(x \right)\\ F_{202}\! \left(x \right) &= F_{184}\! \left(x , 1\right)\\ F_{203}\! \left(x \right) &= F_{17}\! \left(x \right) F_{204}\! \left(x \right)\\ F_{204}\! \left(x \right) &= F_{205}\! \left(x , 1\right)\\ F_{205}\! \left(x , y\right) &= -\frac{-F_{206}\! \left(x , y\right) y +F_{206}\! \left(x , 1\right)}{-1+y}\\ F_{206}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{182}\! \left(x , y\right)+F_{207}\! \left(x , y\right)+F_{208}\! \left(x , y\right)+F_{209}\! \left(x , y\right)\\ F_{207}\! \left(x , y\right) &= F_{206}\! \left(x , y\right) F_{24}\! \left(x , y\right)\\ F_{208}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{184}\! \left(x , y\right)\\ F_{209}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{205}\! \left(x , y\right)\\ F_{210}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{211}\! \left(x , y\right)\\ F_{211}\! \left(x , y\right) &= -\frac{-F_{186}\! \left(x , y\right) y +F_{186}\! \left(x , 1\right)}{-1+y}\\ F_{212}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{213}\! \left(x , y\right)\\ F_{213}\! \left(x , y\right) &= -\frac{-y F_{184}\! \left(x , y\right)+F_{184}\! \left(x , 1\right)}{-1+y}\\ F_{214}\! \left(x \right) &= F_{17}\! \left(x \right) F_{202}\! \left(x \right)\\ F_{215}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{216}\! \left(x , y\right)\\ F_{216}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{189}\! \left(x , y\right)+F_{190}\! \left(x , y\right)+F_{191}\! \left(x , y\right)+F_{198}\! \left(x \right)+F_{201}\! \left(x \right)\\ F_{217}\! \left(x \right) &= F_{17}\! \left(x \right) F_{218}\! \left(x \right)\\ F_{218}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{198}\! \left(x \right)+F_{201}\! \left(x \right)+F_{219}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{219}\! \left(x \right) &= F_{160}\! \left(x \right)\\ F_{220}\! \left(x \right) &= F_{187}\! \left(x , 1\right)\\ F_{221}\! \left(x \right) &= F_{17}\! \left(x \right) F_{222}\! \left(x \right)\\ F_{222}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{198}\! \left(x \right)+F_{201}\! \left(x \right)+F_{223}\! \left(x \right)\\ F_{223}\! \left(x \right) &= F_{17}\! \left(x \right) F_{224}\! \left(x \right)\\ F_{224}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{193}\! \left(x \right)+F_{195}\! \left(x \right)+F_{219}\! \left(x \right)+F_{220}\! \left(x \right)\\ F_{225}\! \left(x \right) &= F_{17}\! \left(x \right) F_{226}\! \left(x \right)\\ F_{226}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{174}\! \left(x \right)+F_{198}\! \left(x \right)+F_{227}\! \left(x \right)\\ F_{227}\! \left(x \right) &= F_{17}\! \left(x \right) F_{222}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Col Placements Untracked Component Fusion Req Corrob" and has 110 rules.

Finding the specification took 372 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 110 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{107}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{105}\! \left(x \right)+F_{37}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{11}\! \left(x \right)+F_{12}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{11}\! \left(x \right) &= 0\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= x\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= x^{2} F_{22} \left(x \right)^{2}+2 x^{2} F_{22}\! \left(x \right)-2 x F_{22} \left(x \right)^{2}+x^{2}-3 x F_{22}\! \left(x \right)-x +2 F_{22}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x , 1\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{8}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y\right)+F_{32}\! \left(x , y\right)+F_{35}\! \left(x , y\right)+F_{37}\! \left(x \right)+F_{99}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{31}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{14}\! \left(x \right)+F_{26}\! \left(x , y\right)\\ F_{31}\! \left(x , y\right) &= y x\\ F_{32}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{33}\! \left(x , y\right)\\ F_{33}\! \left(x , y\right) &= F_{13}\! \left(x \right)+F_{34}\! \left(x , y\right)\\ F_{34}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\ F_{35}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{36}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= -\frac{-F_{28}\! \left(x , y\right) y +F_{28}\! \left(x , 1\right)}{-1+y}\\ F_{37}\! \left(x \right) &= F_{17}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x , 1\right)\\ F_{39}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{40}\! \left(x , y\right)+F_{41}\! \left(x , y\right)+F_{42}\! \left(x , y\right)+F_{44}\! \left(x , y\right)\\ F_{40}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{39}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{28}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{43}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= -\frac{-F_{39}\! \left(x , y\right) y +F_{39}\! \left(x , 1\right)}{-1+y}\\ F_{44}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{45}\! \left(x , y\right)\\ F_{45}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)+F_{46}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{78}\! \left(x \right)+F_{97}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{47}\! \left(x , y\right)\\ F_{47}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x , y\right)+F_{48}\! \left(x , y\right)+F_{75}\! \left(x \right)+F_{95}\! \left(x , y\right)\\ F_{48}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{49}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{50}\! \left(x , y\right)+F_{73}\! \left(x \right)+F_{75}\! \left(x \right)+F_{91}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x , y\right)\\ F_{51}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{31}\! \left(x , y\right) F_{52}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{53}\! \left(x , y\right)+F_{54}\! \left(x , y\right)+F_{89}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{52}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{55}\! \left(x , y\right)\\ F_{49}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)+F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{57}\! \left(x \right)+F_{87}\! \left(x , y\right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{58}\! \left(x \right) &= -F_{67}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{60}\! \left(x \right)+F_{73}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{17}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{0}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{65}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{17}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= x^{2} F_{68} \left(x \right)^{2}-2 x F_{68} \left(x \right)^{2}+F_{68}\! \left(x \right) x +2 F_{68}\! \left(x \right)-1\\ F_{69}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{17}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x , 1\right)\\ F_{52}\! \left(x , y\right) &= F_{67}\! \left(x \right)+F_{72}\! \left(x , y\right)\\ F_{73}\! \left(x \right) &= F_{17}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{47}\! \left(x , 1\right)\\ F_{75}\! \left(x \right) &= F_{17}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{37}\! \left(x \right)+F_{77}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{17}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{17}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x , 1\right)\\ F_{80}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{42}\! \left(x , y\right)+F_{81}\! \left(x , y\right)+F_{82}\! \left(x , y\right)+F_{83}\! \left(x , y\right)\\ F_{81}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{80}\! \left(x , y\right)\\ F_{82}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{45}\! \left(x , y\right)\\ F_{83}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{84}\! \left(x , y\right)\\ F_{84}\! \left(x , y\right) &= -\frac{-F_{80}\! \left(x , y\right) y +F_{80}\! \left(x , 1\right)}{-1+y}\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{2}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{87}\! \left(x , y\right) &= F_{88}\! \left(x , y\right)\\ F_{88}\! \left(x , y\right) &= F_{2}\! \left(x \right) F_{72}\! \left(x , y\right)\\ F_{89}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{90}\! \left(x , y\right)\\ F_{90}\! \left(x , y\right) &= -\frac{-F_{52}\! \left(x , y\right) y +F_{52}\! \left(x , 1\right)}{-1+y}\\ F_{91}\! \left(x , y\right) &= F_{92}\! \left(x , y\right)\\ F_{92}\! \left(x , y\right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{55}\! \left(x , y\right)\\ F_{93}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{94}\! \left(x , y\right)\\ F_{94}\! \left(x , y\right) &= -\frac{-F_{49}\! \left(x , y\right) y +F_{49}\! \left(x , 1\right)}{-1+y}\\ F_{95}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{96}\! \left(x , y\right)\\ F_{96}\! \left(x , y\right) &= -\frac{-F_{47}\! \left(x , y\right) y +F_{47}\! \left(x , 1\right)}{-1+y}\\ F_{97}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{98}\! \left(x , y\right)\\ F_{98}\! \left(x , y\right) &= -\frac{-y F_{45}\! \left(x , y\right)+F_{45}\! \left(x , 1\right)}{-1+y}\\ F_{99}\! \left(x , y\right) &= F_{100}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{100}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{101}\! \left(x \right)+F_{37}\! \left(x \right)+F_{50}\! \left(x , y\right)+F_{78}\! \left(x \right)+F_{91}\! \left(x , y\right)+F_{93}\! \left(x , y\right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{45}\! \left(x , 1\right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{0}\! \left(x \right) F_{17}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{101}\! \left(x \right)+F_{37}\! \left(x \right)+F_{60}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{109}\! \left(x \right)+F_{37}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{106}\! \left(x \right) F_{17}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Insertion Row Placements Tracked Fusion Tracked Component Fusion Req Corrob" and has 200 rules.

Finding the specification took 2259 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 200 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= 0\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{22}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{32}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x , 1\right)\\ F_{45}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{46}\! \left(x , y_{0}\right)+F_{85}\! \left(x , y_{0}\right)\\ F_{46}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{47}\! \left(x , 1\right)-F_{47}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\ F_{47}\! \left(x , y_{0}\right) &= F_{48}\! \left(x , y_{0}\right) F_{8}\! \left(x \right)\\ F_{48}\! \left(x , y_{0}\right) &= F_{45}\! \left(x , y_{0}\right)+F_{49}\! \left(x , y_{0}\right)\\ F_{49}\! \left(x , y_{0}\right) &= F_{50}\! \left(x , y_{0}\right)\\ F_{50}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{52}\! \left(x , y_{0}\right)\\ F_{51}\! \left(x , y_{0}\right) &= y_{0} x\\ F_{52}\! \left(x , y_{0}\right) &= F_{53}\! \left(x , y_{0}\right)+F_{61}\! \left(x , y_{0}\right)\\ F_{53}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{54}\! \left(x , y_{0}\right)\\ F_{54}\! \left(x , y_{0}\right) &= F_{55}\! \left(x , y_{0}\right)\\ F_{55}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{56}\! \left(x , y_{0}\right)\\ F_{56}\! \left(x , y_{0}\right) &= F_{53}\! \left(x , y_{0}\right)+F_{57}\! \left(x , y_{0}\right)\\ F_{57}\! \left(x , y_{0}\right) &= F_{58}\! \left(x , y_{0}\right)\\ F_{58}\! \left(x , y_{0}\right) &= F_{59}\! \left(x , y_{0}\right)\\ F_{59}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{60}\! \left(x , y_{0}\right)\\ F_{60}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{58}\! \left(x , y_{0}\right)\\ F_{61}\! \left(x , y_{0}\right) &= F_{62}\! \left(x , y_{0}\right)+F_{73}\! \left(x , y_{0}\right)\\ F_{62}\! \left(x , y_{0}\right) &= F_{63}\! \left(x , y_{0}\right)\\ F_{63}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{64}\! \left(x , y_{0}\right)\\ F_{64}\! \left(x , y_{0}\right) &= F_{60}\! \left(x , y_{0}\right)+F_{65}\! \left(x , y_{0}\right)\\ F_{65}\! \left(x , y_{0}\right) &= F_{66}\! \left(x , y_{0}\right)+F_{69}\! \left(x , y_{0}\right)\\ F_{66}\! \left(x , y_{0}\right) &= F_{67}\! \left(x , y_{0}\right)\\ F_{67}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{68}\! \left(x , y_{0}\right)\\ F_{68}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{66}\! \left(x , y_{0}\right)\\ F_{69}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{70}\! \left(x , y_{0}\right)+F_{72}\! \left(x , y_{0}\right)\\ F_{70}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{71}\! \left(x , y_{0}\right)\\ F_{71}\! \left(x , y_{0}\right) &= F_{58}\! \left(x , y_{0}\right)+F_{69}\! \left(x , y_{0}\right)\\ F_{72}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{65}\! \left(x , y_{0}\right)\\ F_{73}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{74}\! \left(x , y_{0}\right)+F_{81}\! \left(x , y_{0}\right)\\ F_{74}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{75}\! \left(x , y_{0}\right)\\ F_{75}\! \left(x , y_{0}\right) &= F_{76}\! \left(x , y_{0}\right)+F_{77}\! \left(x , y_{0}\right)\\ F_{76}\! \left(x , y_{0}\right) &= F_{54}\! \left(x , y_{0}\right)\\ F_{77}\! \left(x , y_{0}\right) &= F_{78}\! \left(x , y_{0}\right)\\ F_{78}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{79}\! \left(x , y_{0}\right)+F_{81}\! \left(x , y_{0}\right)\\ F_{79}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{80}\! \left(x , y_{0}\right)\\ F_{80}\! \left(x , y_{0}\right) &= F_{54}\! \left(x , y_{0}\right)+F_{78}\! \left(x , y_{0}\right)\\ F_{81}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{82}\! \left(x , y_{0}\right)\\ F_{82}\! \left(x , y_{0}\right) &= F_{83}\! \left(x , y_{0}\right)+F_{84}\! \left(x , y_{0}\right)\\ F_{83}\! \left(x , y_{0}\right) &= F_{66}\! \left(x , y_{0}\right)+F_{78}\! \left(x , y_{0}\right)\\ F_{84}\! \left(x , y_{0}\right) &= F_{69}\! \left(x , y_{0}\right)\\ F_{85}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{86}\! \left(x , y_{0}\right)\\ F_{86}\! \left(x , y_{0}\right) &= F_{198}\! \left(x , y_{0}\right)+F_{87}\! \left(x , y_{0}\right)\\ F_{87}\! \left(x , y_{0}\right) &= F_{2}\! \left(x \right)+F_{88}\! \left(x , y_{0}\right)\\ F_{88}\! \left(x , y_{0}\right) &= F_{194}\! \left(x , y_{0}\right)+F_{27}\! \left(x \right)+F_{89}\! \left(x , y_{0}\right)\\ F_{89}\! \left(x , y_{0}\right) &= F_{8}\! \left(x \right) F_{90}\! \left(x , y_{0}\right)\\ F_{90}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)+F_{91}\! \left(x , y_{0}\right)\\ F_{91}\! \left(x , y_{0}\right) &= F_{54}\! \left(x , y_{0}\right)+F_{92}\! \left(x , y_{0}\right)\\ F_{92}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{93}\! \left(x , y_{0}\right)+F_{99}\! \left(x , y_{0}\right)\\ F_{93}\! \left(x , y_{0}\right) &= -\frac{y_{0} \left(F_{94}\! \left(x , 1\right)-F_{94}\! \left(x , y_{0}\right)\right)}{-1+y_{0}}\\ F_{94}\! \left(x , y_{0}\right) &= F_{8}\! \left(x \right) F_{95}\! \left(x , y_{0}\right)\\ F_{95}\! \left(x , y_{0}\right) &= F_{54}\! \left(x , y_{0}\right)+F_{96}\! \left(x , y_{0}\right)\\ F_{96}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{93}\! \left(x , y_{0}\right)+F_{97}\! \left(x , y_{0}\right)\\ F_{97}\! \left(x , y_{0}\right) &= F_{98}\! \left(x , y_{0}\right)\\ F_{98}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{60}\! \left(x , y_{0}\right) F_{8}\! \left(x \right)\\ F_{99}\! \left(x , y_{0}\right) &= F_{100}\! \left(x , y_{0}\right)\\ F_{100}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{101}\! \left(x , y_{0}\right) &= F_{102}\! \left(x , y_{0}\right)+F_{104}\! \left(x , y_{0}\right)\\ F_{102}\! \left(x , y_{0}\right) &= F_{103}\! \left(x , y_{0}\right) F_{6}\! \left(x \right)\\ F_{103}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{51}\! \left(x , y_{0}\right)\\ F_{104}\! \left(x , y_{0}\right) &= F_{58}\! \left(x , y_{0}\right) F_{8}\! \left(x \right)\\ F_{105}\! \left(x , y_{0}\right) &= F_{106}\! \left(x , y_{0}\right)+F_{88}\! \left(x , y_{0}\right)\\ F_{106}\! \left(x , y_{0}\right) &= F_{107}\! \left(x , 1, y_{0}\right)\\ F_{107}\! \left(x , y_{0}, y_{1}\right) &= F_{108}\! \left(x , y_{0}, y_{1}\right)+F_{124}\! \left(x , y_{0}, y_{1}\right)+F_{187}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)\\ F_{108}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{0} \left(F_{109}\! \left(x , 1, y_{1}\right)-F_{109}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{0}}\\ F_{109}\! \left(x , y_{0}, y_{1}\right) &= F_{110}\! \left(x , y_{0}, y_{1}\right) F_{8}\! \left(x \right)\\ F_{110}\! \left(x , y_{0}, y_{1}\right) &= F_{107}\! \left(x , y_{0}, y_{1}\right)+F_{111}\! \left(x , y_{0}, y_{1}\right)\\ F_{111}\! \left(x , y_{0}, y_{1}\right) &= F_{112}\! \left(x , y_{0}, y_{1}\right)+F_{119}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)\\ F_{112}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} \left(F_{113}\! \left(x , y_{0}, 1\right)-F_{113}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right)\right)}{-y_{1}+y_{0}}\\ F_{113}\! \left(x , y_{0}, y_{1}\right) &= F_{114}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{114}\! \left(x , y_{0}, y_{1}\right) &= F_{115}\! \left(x , y_{0}, y_{1}\right)+F_{54}\! \left(x , y_{0} y_{1}\right)\\ F_{115}\! \left(x , y_{0}, y_{1}\right) &= F_{116}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{116}\! \left(x , y_{0}, y_{1}\right) &= F_{112}\! \left(x , y_{0}, y_{1}\right)+F_{117}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)\\ F_{117}\! \left(x , y_{0}, y_{1}\right) &= F_{118}\! \left(x , y_{0}, y_{1}\right)\\ F_{118}\! \left(x , y_{0}, y_{1}\right) &= F_{51}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right) F_{60}\! \left(x , y_{1}\right)\\ F_{119}\! \left(x , y_{0}, y_{1}\right) &= F_{120}\! \left(x , y_{0}, y_{1}\right)\\ F_{120}\! \left(x , y_{0}, y_{1}\right) &= F_{121}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{121}\! \left(x , y_{0}, y_{1}\right) &= F_{122}\! \left(x , y_{0}, y_{1}\right)+F_{123}\! \left(x , y_{0}, y_{1}\right)\\ F_{122}\! \left(x , y_{0}, y_{1}\right) &= F_{103}\! \left(x , y_{1}\right) F_{49}\! \left(x , y_{0}\right)\\ F_{123}\! \left(x , y_{0}, y_{1}\right) &= F_{51}\! \left(x , y_{0}\right) F_{58}\! \left(x , y_{1}\right)\\ F_{124}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{1} \left(F_{125}\! \left(x , y_{0}, 1\right)-F_{125}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}\right)\right)}{-y_{1}+y_{0}}\\ F_{125}\! \left(x , y_{0}, y_{1}\right) &= F_{126}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{126}\! \left(x , y_{0}, y_{1}\right) &= F_{127}\! \left(x , y_{0}, y_{1}\right)+F_{88}\! \left(x , y_{0} y_{1}\right)\\ F_{127}\! \left(x , y_{0}, y_{1}\right) &= F_{128}\! \left(x , y_{0}, y_{0} y_{1}\right)\\ F_{128}\! \left(x , y_{0}, y_{1}\right) &= F_{124}\! \left(x , y_{0}, y_{1}\right)+F_{129}\! \left(x , y_{0}, y_{1}\right)+F_{185}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)\\ F_{129}\! \left(x , y_{0}, y_{1}\right) &= F_{130}\! \left(x , y_{0}, y_{1}\right) F_{8}\! \left(x \right)\\ F_{130}\! \left(x , y_{0}, y_{1}\right) &= F_{131}\! \left(x , y_{0}, y_{1}\right)+F_{158}\! \left(x , y_{0}, y_{1}\right)\\ F_{131}\! \left(x , y_{0}, y_{1}\right) &= F_{116}\! \left(x , y_{0}, y_{1}\right)+F_{132}\! \left(x , y_{0}, y_{1}\right)\\ F_{132}\! \left(x , y_{0}, y_{1}\right) &= F_{133}\! \left(x , y_{0}, y_{1}\right)+F_{151}\! \left(x , y_{0}, y_{1}\right)+F_{156}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)\\ F_{133}\! \left(x , y_{0}, y_{1}\right) &= F_{134}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{134}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{135}\! \left(x , y_{0}, y_{0} y_{1}, y_{2}\right)\\ F_{135}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} \left(F_{136}\! \left(x , y_{0}, 1, y_{2}\right)-F_{136}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}, y_{2}\right)\right)}{-y_{1}+y_{0}}\\ F_{136}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{137}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{137}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{138}\! \left(x , y_{0} y_{1}, y_{2}\right)+F_{147}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{138}\! \left(x , y_{0}, y_{1}\right) &= F_{117}\! \left(x , y_{0}, y_{1}\right)+F_{139}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)\\ F_{139}\! \left(x , y_{0}, y_{1}\right) &= F_{140}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{140}\! \left(x , y_{0}, y_{1}\right) &= F_{141}\! \left(x , y_{0}, y_{1}\right)+F_{142}\! \left(x , y_{0}, y_{1}\right)\\ F_{141}\! \left(x , y_{0}, y_{1}\right) &= F_{138}\! \left(x , y_{0}, y_{1}\right)+F_{54}\! \left(x , y_{1}\right)\\ F_{142}\! \left(x , y_{0}, y_{1}\right) &= F_{143}\! \left(x , y_{0}, y_{1}\right)+F_{144}\! \left(x , y_{0}, y_{1}\right)\\ F_{143}\! \left(x , y_{0}, y_{1}\right) &= F_{117}\! \left(x , y_{0}, y_{1}\right)\\ F_{144}\! \left(x , y_{0}, y_{1}\right) &= F_{145}\! \left(x , y_{0}, y_{1}\right)\\ F_{145}\! \left(x , y_{0}, y_{1}\right) &= F_{146}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{146}\! \left(x , y_{0}, y_{1}\right) &= F_{142}\! \left(x , y_{0}, y_{1}\right)\\ F_{147}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{134}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{148}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{150}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{27}\! \left(x \right)\\ F_{148}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{149}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{149}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{51}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right) F_{58}\! \left(x , y_{2}\right) F_{60}\! \left(x , y_{1}\right)\\ F_{150}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= 0\\ F_{151}\! \left(x , y_{0}, y_{1}\right) &= F_{152}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{152}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{0} \left(F_{153}\! \left(x , 1, y_{1}, y_{2}\right)-F_{153}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right)\right)}{-y_{1}+y_{0}}\\ F_{153}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{154}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{154}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{2} \left(F_{155}\! \left(x , y_{0}, y_{1}, 1\right)-F_{155}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right)\right)}{-y_{2}+y_{1}}\\ F_{155}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{116}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{156}\! \left(x , y_{0}, y_{1}\right) &= F_{157}\! \left(x , y_{0}, y_{1}\right)\\ F_{157}\! \left(x , y_{0}, y_{1}\right) &= F_{51}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right) F_{6}\! \left(x \right)\\ F_{158}\! \left(x , y_{0}, y_{1}\right) &= F_{128}\! \left(x , y_{0}, y_{1}\right)+F_{159}\! \left(x , y_{0}, y_{1}\right)\\ F_{159}\! \left(x , y_{0}, y_{1}\right) &= F_{160}\! \left(x , 1, y_{0}, y_{1}\right)\\ F_{160}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{161}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{167}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{179}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{183}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{27}\! \left(x \right)\\ F_{161}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{0} \left(F_{162}\! \left(x , 1, y_{1}, y_{2}\right)-F_{162}\! \left(x , y_{0}, y_{1}, y_{2}\right)\right)}{-1+y_{0}}\\ F_{162}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{163}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{8}\! \left(x \right)\\ F_{163}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{160}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{164}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{164}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{135}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{152}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{165}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{27}\! \left(x \right)\\ F_{165}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{166}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{166}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{49}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right) F_{51}\! \left(x , y_{2}\right)\\ F_{167}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{1} \left(F_{168}\! \left(x , y_{0}, 1, y_{2}\right)-F_{168}\! \left(x , y_{0}, \frac{y_{1}}{y_{0}}, y_{2}\right)\right)}{-y_{1}+y_{0}}\\ F_{168}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{169}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{0}\right)\\ F_{169}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{170}\! \left(x , y_{0} y_{1}, y_{2}\right)+F_{175}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{170}\! \left(x , y_{0}, y_{1}\right) &= \frac{F_{171}\! \left(x , y_{0}\right) y_{1}-F_{171}\! \left(x , y_{1}\right) y_{0}}{-y_{1}+y_{0}}\\ F_{172}\! \left(x , y_{0}\right) &= -\frac{F_{171}\! \left(x , 1\right) y_{0}-F_{171}\! \left(x , y_{0}\right)}{-1+y_{0}}\\ F_{173}\! \left(x , y_{0}\right) &= F_{172}\! \left(x , y_{0}\right)+F_{174}\! \left(x \right)\\ F_{173}\! \left(x , y_{0}\right) &= -\frac{-F_{88}\! \left(x , y_{0}\right)+F_{88}\! \left(x , 1\right)}{-1+y_{0}}\\ F_{174}\! \left(x \right) &= F_{88}\! \left(x , 1\right)\\ F_{175}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{-F_{176}\! \left(x , y_{0}, \frac{y_{2}}{y_{0}}\right) y_{0} y_{1}+F_{176}\! \left(x , y_{0}, y_{1}\right) y_{2}}{y_{0} y_{1}-y_{2}}\\ F_{177}\! \left(x , y_{0}, y_{1}\right) &= -\frac{F_{176}\! \left(x , y_{0}, 1\right) y_{1}-F_{176}\! \left(x , y_{0}, y_{1}\right)}{-1+y_{1}}\\ F_{178}\! \left(x , y_{0}, y_{1}\right) &= F_{127}\! \left(x , y_{0}, y_{1}\right)+F_{177}\! \left(x , y_{0}, y_{1}\right)\\ F_{178}\! \left(x , y_{0}, y_{1}\right) &= -\frac{y_{1} \left(F_{127}\! \left(x , y_{0}, 1\right)-F_{127}\! \left(x , y_{0}, y_{1}\right)\right)}{-1+y_{1}}\\ F_{179}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{0} \left(F_{180}\! \left(x , 1, y_{1}, y_{2}\right)-F_{180}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right)\right)}{-y_{1}+y_{0}}\\ F_{180}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{181}\! \left(x , y_{0}, y_{1}, y_{2}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{181}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= \frac{y_{2} \left(F_{182}\! \left(x , y_{0}, y_{1}, 1\right)-F_{182}\! \left(x , y_{0}, y_{1}, \frac{y_{2}}{y_{1}}\right)\right)}{-y_{2}+y_{1}}\\ F_{182}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{128}\! \left(x , y_{0} y_{1}, y_{1} y_{2}\right)\\ F_{183}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{184}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\ F_{184}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{45}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right) F_{51}\! \left(x , y_{2}\right)\\ F_{185}\! \left(x , y_{0}, y_{1}\right) &= F_{186}\! \left(x , y_{0}, y_{1}\right)\\ F_{186}\! \left(x , y_{0}, y_{1}\right) &= F_{2}\! \left(x \right) F_{51}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right) F_{60}\! \left(x , y_{1}\right)\\ F_{187}\! \left(x , y_{0}, y_{1}\right) &= F_{188}\! \left(x , y_{0}, y_{1}\right)\\ F_{188}\! \left(x , y_{0}, y_{1}\right) &= F_{189}\! \left(x , y_{0}, y_{1}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{189}\! \left(x , y_{0}, y_{1}\right) &= F_{190}\! \left(x , y_{0}, y_{1}\right)+F_{193}\! \left(x , y_{0}, y_{1}\right)\\ F_{190}\! \left(x , y_{0}, y_{1}\right) &= F_{191}\! \left(x , y_{0}, y_{1}\right)+F_{45}\! \left(x , y_{0}\right)\\ F_{191}\! \left(x , y_{0}, y_{1}\right) &= F_{192}\! \left(x , y_{0}, y_{1}\right)\\ F_{192}\! \left(x , y_{0}, y_{1}\right) &= F_{2}\! \left(x \right) F_{51}\! \left(x , y_{0}\right) F_{58}\! \left(x , y_{1}\right)\\ F_{193}\! \left(x , y_{0}, y_{1}\right) &= F_{45}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{1}\right)\\ F_{194}\! \left(x , y_{0}\right) &= F_{195}\! \left(x , y_{0}\right)\\ F_{195}\! \left(x , y_{0}\right) &= F_{196}\! \left(x , y_{0}\right) F_{2}\! \left(x \right) F_{51}\! \left(x , y_{0}\right)\\ F_{196}\! \left(x , y_{0}\right) &= F_{197}\! \left(x , y_{0}\right)+F_{53}\! \left(x , y_{0}\right)\\ F_{197}\! \left(x , y_{0}\right) &= F_{51}\! \left(x , y_{0}\right) F_{60}\! \left(x , y_{0}\right)\\ F_{198}\! \left(x , y_{0}\right) &= F_{199}\! \left(x , y_{0}\right)+F_{45}\! \left(x , y_{0}\right)\\ F_{199}\! \left(x , y_{0}\right) &= F_{127}\! \left(x , y_{0}, 1\right)\\ \end{align*}\)