Av(12435, 12453, 12543, 14235, 14253, 14325, 41235, 41253, 41325, 43125)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 530, 2605, 12996, 65830, 338372, 1761778, 9272894, 49253461, 263655194, ...

This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 40 rules.

Found on January 22, 2022.

Finding the specification took 29 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 40 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{7}\! \left(x \right)\\ F_{6}\! \left(x , y\right) &= \frac{F_{4}\! \left(x , y\right) y -F_{4}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x \right) &= x\\ F_{8}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , 1, y\right)\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y z , z\right)\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{15}\! \left(x , y , z\right)+F_{38}\! \left(x , y , z\right)\\ F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right) F_{7}\! \left(x \right)\\ F_{13}\! \left(x , y , z\right) &= \frac{F_{14}\! \left(x , y , z\right) y -F_{14}\! \left(x , 1, z\right)}{-1+y}\\ F_{14}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y , z\right)+F_{38}\! \left(x , y , z\right)+F_{5}\! \left(x , y\right)\\ F_{15}\! \left(x , y , z\right) &= F_{16}\! \left(x , y , z\right) F_{30}\! \left(x , y\right)\\ F_{16}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{19}\! \left(x , y\right)+F_{21}\! \left(x , y , z\right)+F_{32}\! \left(x , y , z\right)\\ F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , 1, y\right)\\ F_{18}\! \left(x , y , z\right) &= F_{12}\! \left(x , y z , z\right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , 1, y\right)\\ F_{20}\! \left(x , y , z\right) &= F_{15}\! \left(x , y z , z\right)\\ F_{21}\! \left(x , y , z\right) &= F_{22}\! \left(x , y , z\right)\\ F_{22}\! \left(x , y , z\right) &= F_{23}\! \left(x , y , z\right) F_{30}\! \left(x , y\right) F_{4}\! \left(x , y\right)\\ F_{23}\! \left(x , y , z\right) &= \frac{F_{24}\! \left(x , y , 1\right) y -F_{24}\! \left(x , y , \frac{z}{y}\right) z}{-z +y}\\ F_{24}\! \left(x , y , z\right) &= F_{25}\! \left(x , y z \right)+F_{31}\! \left(x , y , z\right)\\ F_{25}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)^{2} F_{30}\! \left(x , y\right)\\ F_{28}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x , y\right)\\ F_{29}\! \left(x , y\right) &= F_{28}\! \left(x , y\right) F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= y x\\ F_{31}\! \left(x , y , z\right) &= F_{28}\! \left(x , z\right) F_{30}\! \left(x , y\right)\\ F_{32}\! \left(x , y , z\right) &= F_{33}\! \left(x , y , z\right)\\ F_{33}\! \left(x , y , z\right) &= F_{30}\! \left(x , z\right) F_{34}\! \left(x , y , z\right) F_{4}\! \left(x , y\right)\\ F_{34}\! \left(x , y , z\right) &= F_{35}\! \left(x , z\right)+F_{37}\! \left(x , y , z\right)\\ F_{35}\! \left(x , y\right) &= F_{25}\! \left(x , y\right)+F_{36}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{28}\! \left(x , y\right) F_{30}\! \left(x , y\right)\\ F_{37}\! \left(x , y , z\right) &= F_{28}\! \left(x , z\right) F_{30}\! \left(x , y\right)\\ F_{38}\! \left(x , y , z\right) &= F_{39}\! \left(x , y , z\right)\\ F_{39}\! \left(x , y , z\right) &= F_{30}\! \left(x , z\right) F_{35}\! \left(x , z\right) F_{4}\! \left(x , y\right)\\ \end{align*}\)