Av(123, 4321)
Generating Function
      
        \(\displaystyle 25 x^{6}+25 x^{5}+13 x^{4}+5 x^{3}+2 x^{2}+x +1\)
      
      
    Counting Sequence
      
        1, 1, 2, 5, 13, 25, 25, 0, 0, 0, 0, 0, 0, 0, 0, ...
      
      
    
        Implicit Equation for the Generating Function
        
      
      
      
        \(\displaystyle -F \! \left(x \right)+25 x^{6}+25 x^{5}+13 x^{4}+5 x^{3}+2 x^{2}+x +1 = 0\)
      
      
      
    Recurrence
      
        
        
        \(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 25\)
\(\displaystyle a \! \left(6\right) = 25\)
\(\displaystyle a \! \left(n \right) = 0, \quad n \geq 7\)
      
    \(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 25\)
\(\displaystyle a \! \left(6\right) = 25\)
\(\displaystyle a \! \left(n \right) = 0, \quad n \geq 7\)
Explicit Closed Form
      
        
        \(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ 5 & n =3 \\ 13 & n =4 \\ 25 & n =5\text{ or } n =6 \\ 0 & \text{otherwise}  \end{array}\right.\)
      
      
    This specification was found using the strategy pack "Point Placements" and has 68 rules.
Found on January 18, 2022.Finding the specification took 3 seconds.
            
              Copy 68 equations to clipboard:
            
            
            
            
            
            
            
            
            
            
        
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= x\\
                
                F_{5}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{6}\! \left(x \right)\\
                
                F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
                
                F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
                
                F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
                
                F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
                
                F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
                
                F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
                
                F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{32}\! \left(x \right)\\
                
                F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
                
                F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{9}\! \left(x \right)\\
                
                F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\
                
                F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
                
                F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\
                
                F_{21}\! \left(x \right) &= 0\\
                
                F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{23}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{24}\! \left(x \right)\\
                
                F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
                
                F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{26}\! \left(x \right) &= F_{4}\! \left(x \right)\\
                
                F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{28}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{29}\! \left(x \right)\\
                
                F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
                
                F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{31}\! \left(x \right) &= F_{4}\! \left(x \right)\\
                
                F_{32}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{33}\! \left(x \right)+F_{61}\! \left(x \right)\\
                
                F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)\\
                
                F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{7}\! \left(x \right)\\
                
                F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
                
                F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{38}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{39}\! \left(x \right)\\
                
                F_{39}\! \left(x \right) &= F_{25}\! \left(x \right)\\
                
                F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{48}\! \left(x \right)\\
                
                F_{41}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\
                
                F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
                
                F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{7}\! \left(x \right)\\
                
                F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
                
                F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
                
                F_{46}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{4}\! \left(x \right)\\
                
                F_{47}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
                
                F_{48}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{49}\! \left(x \right)+F_{54}\! \left(x \right)\\
                
                F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
                
                F_{50}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{51}\! \left(x \right)\\
                
                F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\
                
                F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\
                
                F_{53}\! \left(x \right) &= F_{24}\! \left(x \right)\\
                
                F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\
                
                F_{55}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{56}\! \left(x \right)\\
                
                F_{56}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{57}\! \left(x \right)+F_{59}\! \left(x \right)\\
                
                F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
                
                F_{58}\! \left(x \right) &= F_{39}\! \left(x \right)\\
                
                F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
                
                F_{60}\! \left(x \right) &= F_{29}\! \left(x \right)\\
                
                F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
                
                F_{62}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{63}\! \left(x \right)\\
                
                F_{63}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{27}\! \left(x \right)+F_{64}\! \left(x \right)\\
                
                F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
                
                F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\
                
                F_{66}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{39}\! \left(x \right)\\
                
                F_{67}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{56}\! \left(x \right)\\
                
                \end{align*}\)