Av(123, 3421)
Generating Function
\(\displaystyle \frac{x^{5}-3 x^{4}+5 x^{3}-7 x^{2}+4 x -1}{\left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 5, 13, 30, 61, 112, 190, 303, 460, 671, 947, 1300, 1743, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{5} F \! \left(x \right)-x^{5}+3 x^{4}-5 x^{3}+7 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 30\)
\(\displaystyle a \! \left(n \right) = \frac{n \left(n^{3}+2 n^{2}-13 n +34\right)}{24}, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(5\right) = 30\)
\(\displaystyle a \! \left(n \right) = \frac{n \left(n^{3}+2 n^{2}-13 n +34\right)}{24}, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{n \left(n^{3}+2 n^{2}-13 n +34\right)}{24} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 41 rules.
Found on January 17, 2022.Finding the specification took 2 seconds.
Copy 41 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{11}\! \left(x \right) &= 0\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= 2 F_{11}\! \left(x \right)+F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= 2 F_{11}\! \left(x \right)+F_{25}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{33}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{7}\! \left(x \right)\\
\end{align*}\)