Av(123, 3412, 4321)
Generating Function
\(\displaystyle 9 x^{6}+16 x^{5}+12 x^{4}+5 x^{3}+2 x^{2}+x +1\)
Counting Sequence
1, 1, 2, 5, 12, 16, 9, 0, 0, 0, 0, 0, 0, 0, 0, ...
Implicit Equation for the Generating Function
\(\displaystyle -F \! \left(x \right)+9 x^{6}+16 x^{5}+12 x^{4}+5 x^{3}+2 x^{2}+x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 12\)
\(\displaystyle a \! \left(5\right) = 16\)
\(\displaystyle a \! \left(6\right) = 9\)
\(\displaystyle a \! \left(n \right) = 0, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 12\)
\(\displaystyle a \! \left(5\right) = 16\)
\(\displaystyle a \! \left(6\right) = 9\)
\(\displaystyle a \! \left(n \right) = 0, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ 5 & n =3 \\ 12 & n =4 \\ 16 & n =5 \\ 9 & n =6 \\ 0 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 63 rules.
Found on January 18, 2022.Finding the specification took 3 seconds.
Copy 63 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= x^{2}\\
F_{31}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{32}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{41}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{27}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{50}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{51}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{27}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{48}\! \left(x \right)\\
\end{align*}\)