Av(123, 2431)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{4}-3 x^{3}+6 x^{2}-4 x +1}{\left(2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 5, 13, 32, 74, 163, 347, 722, 1480, 3005, 6065, 12196, 24470, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)-x^{4}+3 x^{3}-6 x^{2}+4 x -1 = 0\)
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 13\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right)+\frac{\left(-1+n \right) n}{2}, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ -\frac{n}{2}-\frac{n^{2}}{2}-1+3 \,2^{-1+n} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 33 rules.

Found on January 17, 2022.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 33 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{11}\! \left(x \right) &= 0\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 2 F_{11}\! \left(x \right)+F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{26}\! \left(x \right)\\ \end{align*}\)