Av(123, 2143, 2413, 2431, 3241)
Generating Function
\(\displaystyle \frac{x^{4}+2 x^{3}-x +1}{\left(x -1\right) \left(x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 5, 10, 18, 31, 52, 86, 141, 230, 374, 607, 984, 1594, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{2}+x -1\right) F \! \left(x \right)+x^{4}+2 x^{3}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 10\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+a \! \left(n +1\right)+3, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 10\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+a \! \left(n +1\right)+3, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(5-2 \sqrt{5}\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{5}-3+\frac{\left(5+2 \sqrt{5}\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{5} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 24 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 24 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{12}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{11}\! \left(x \right) &= 0\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{2}\! \left(x \right)\\
\end{align*}\)