Av(123, 1432, 3241, 4213)
Generating Function
\(\displaystyle \frac{x^{9}+2 x^{8}-x^{7}-4 x^{6}-5 x^{5}+2 x^{4}+x^{3}-x +1}{\left(x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 5, 11, 16, 26, 46, 83, 151, 276, 506, 929, 1707, 3138, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+x^{9}+2 x^{8}-x^{7}-4 x^{6}-5 x^{5}+2 x^{4}+x^{3}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 11\)
\(\displaystyle a \! \left(5\right) = 16\)
\(\displaystyle a \! \left(6\right) = 26\)
\(\displaystyle a \! \left(7\right) = 46\)
\(\displaystyle a \! \left(8\right) = 83\)
\(\displaystyle a \! \left(9\right) = 151\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)-4, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 11\)
\(\displaystyle a \! \left(5\right) = 16\)
\(\displaystyle a \! \left(6\right) = 26\)
\(\displaystyle a \! \left(7\right) = 46\)
\(\displaystyle a \! \left(8\right) = 83\)
\(\displaystyle a \! \left(9\right) = 151\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)-4, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \frac{8 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{11}+\frac{9 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{11}+\frac{23 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{22}-\frac{13 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{22}+\left(\left\{\begin{array}{cc}-2 & n =0\text{ or } n =1\text{ or } n =2 \\ -1 & n =3 \\ 2 & n =4 \\ 1 & n =5 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 41 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 41 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{21}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= x^{2}\\
\end{align*}\)