Av(123, 1432, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{x -1}{\left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right)}\)
Counting Sequence
1, 1, 2, 5, 12, 26, 58, 131, 295, 662, 1487, 3342, 7510, 16874, 37915, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right) F \! \left(x \right)+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 12\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)-a \! \left(n +1\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{149 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}-Z^{4}-Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{2366}+\frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}-Z^{4}-Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{1183}+\frac{185 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}-Z^{4}-Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{2366}+\frac{457 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}-Z^{4}-Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{2366}+\frac{243 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{5}-Z^{4}-Z^{3}-2 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{2366}\)

This specification was found using the strategy pack "Point Placements" and has 39 rules.

Found on January 18, 2022.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 39 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{12}\! \left(x \right) &= 0\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{24}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= x^{2}\\ F_{34}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{28}\! \left(x \right)\\ \end{align*}\)