Av(123, 1432, 2413, 3142, 3214)
Generating Function
\(\displaystyle -\frac{1}{x^{4}+2 x^{3}+x^{2}+x -1}\)
Counting Sequence
1, 1, 2, 5, 10, 20, 42, 87, 179, 370, 765, 1580, 3264, 6744, 13933, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{4}+2 x^{3}+x^{2}+x -1\right) F \! \left(x \right)+1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(n +4\right) = a \! \left(n \right)+2 a \! \left(n +1\right)+a \! \left(n +2\right)+a \! \left(n +3\right), \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(n +4\right) = a \! \left(n \right)+2 a \! \left(n +1\right)+a \! \left(n +2\right)+a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{12 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}+2 Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{751}+\frac{86 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}+2 Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{751}+\frac{206 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}+2 Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{751}+\frac{75 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{4}+2 Z^{3}+Z^{2}+Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{751}\)
This specification was found using the strategy pack "Point Placements" and has 21 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 21 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{12}\! \left(x \right) &= 0\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)