Av(123, 1432, 2413)
View Raw Data
Generating Function
(x1)2x32x2+3x1
Counting Sequence
1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, ...
Implicit Equation for the Generating Function
(x32x2+3x1)F(x)+(x1)2=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(n+3)=a(n)2a(n+1)+3a(n+2),n3
Explicit Closed Form
2(α=RootOf(Z32Z2+3Z1)αn+1)23+8(α=RootOf(Z32Z2+3Z1)αn)23+(α=RootOf(Z32Z2+3Z1)αn1)23

This specification was found using the strategy pack "Point Placements" and has 31 rules.

Found on January 18, 2022.

Finding the specification took 3 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 31 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F10(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F1(x)+F4(x)F10(x)=F11(x)+F2(x)F11(x)=F12(x)+F13(x)+F29(x)F12(x)=0F13(x)=F14(x)F4(x)F14(x)=F15(x)+F19(x)F15(x)=F16(x)+F7(x)F16(x)=F17(x)F17(x)=F18(x)F4(x)F18(x)=F4(x)F19(x)=F11(x)+F20(x)F20(x)=2F12(x)+F21(x)+F25(x)F21(x)=F22(x)F4(x)F22(x)=F23(x)+F24(x)F23(x)=F16(x)F24(x)=F20(x)F25(x)=F26(x)F4(x)F26(x)=F27(x)F27(x)=F28(x)F28(x)=F2(x)F4(x)F29(x)=F30(x)F4(x)F30(x)=F2(x)+F27(x)