Av(123, 1432, 2143, 3241)
Generating Function
\(\displaystyle -\frac{x^{6}-2 x^{4}-x^{3}+x -1}{\left(x -1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 5, 11, 21, 39, 73, 135, 249, 459, 845, 1555, 2861, 5263, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+x^{6}-2 x^{4}-x^{3}+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 11\)
\(\displaystyle a \! \left(5\right) = 21\)
\(\displaystyle a \! \left(6\right) = 39\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)+2, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 5\)
\(\displaystyle a \! \left(4\right) = 11\)
\(\displaystyle a \! \left(5\right) = 21\)
\(\displaystyle a \! \left(6\right) = 39\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)+a \! \left(n +1\right)+a \! \left(n +2\right)+2, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 2 & n =2 \\ \frac{\left(\left(\left(i+\frac{5 \sqrt{11}}{33}\right) \sqrt{3}-\frac{5 i \sqrt{11}}{11}-1\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(i-\frac{7 \sqrt{11}}{33}\right) \sqrt{3}-\frac{7 i \sqrt{11}}{11}+1\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \left(\frac{\left(\left(17 i+3 \sqrt{11}\right) \sqrt{3}-9 i \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{i \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{4}\\-\\\frac{\left(\left(\left(-\frac{5 \sqrt{11}}{33}+i\right) \sqrt{3}-\frac{5 i \sqrt{11}}{11}+1\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(i+\frac{7 \sqrt{11}}{33}\right) \sqrt{3}-\frac{7 i \sqrt{11}}{11}-1\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \left(\frac{\left(\left(-17 i+3 \sqrt{11}\right) \sqrt{3}+9 i \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{i \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{4}\\-1+\\\frac{\left(14 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{11}\, \sqrt{3}-10 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}-66 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+66 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{132} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 27 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 27 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{12}\! \left(x \right) &= 0\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x^{2}\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)