Av(123, 132, 3241, 4213)
Generating Function
\(\displaystyle -\frac{x^{5}+x^{4}-x^{3}+x -1}{\left(x -1\right) \left(x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+x -1\right) F \! \left(x \right)+x^{5}+x^{4}-x^{3}+x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 4\)
\(\displaystyle a \! \left(4\right) = 6\)
\(\displaystyle a \! \left(5\right) = 9\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+a \! \left(n +1\right)-1, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 4\)
\(\displaystyle a \! \left(4\right) = 6\)
\(\displaystyle a \! \left(5\right) = 9\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)+a \! \left(n +1\right)-1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(5-\sqrt{5}\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{10}+1+\frac{\left(5+\sqrt{5}\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{10} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 20 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 20 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{16}\! \left(x \right)\\
\end{align*}\)