Av(123, 132, 3214, 3421)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{5}+2 x^{4}+2 x^{3}+x^{2}+1}{x -1}\)
Counting Sequence
1, 1, 2, 4, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) F \! \left(x \right)+x^{5}+2 x^{4}+2 x^{3}+x^{2}+1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 4\)
\(\displaystyle a \! \left(4\right) = 6\)
\(\displaystyle a \! \left(5\right) = 7\)
\(\displaystyle a \! \left(n \right) = 7, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ 4 & n =3 \\ 6 & n =4 \\ 7 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 17 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 17 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= 0\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\ \end{align*}\)