Av(123, 132, 213, 231, 312)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{3}-x^{2}-1}{x -1}\)
Counting Sequence
1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(1-x \right) F \! \left(x \right)+x^{3}-x^{2}-1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 1\)
\(\displaystyle a \! \left(n \right) = 1, \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}2 & n =0 \\ 1 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 11 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 11 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ \end{align*}\)