Av(123, 132)
Generating Function
\(\displaystyle \frac{x -1}{2 x -1}\)
Counting Sequence
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) F \! \left(x \right)+1-x = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right), \quad n \geq 2\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(n +1\right) = 2 a \! \left(n \right), \quad n \geq 2\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 2^{-1+n} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 15 rules.
Found on January 17, 2022.Finding the specification took 1 seconds.
Copy 15 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= 0\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)