Av(12354, 13254, 13524, 21354, 23154, 23514, 31254, 31524, 32154, 32514, 35124, 35214)
Counting Sequence
1, 1, 2, 6, 24, 108, 512, 2496, 12382, 62168, 314934, 1606572, 8242198, 42486590, 219906314, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{2} F \left(x
\right)^{8}+2 x^{2} \left(x -4\right) F \left(x
\right)^{7}+\left(4 x^{5}-8 x^{4}+6 x^{3}+10 x^{2}+8 x -1\right) F \left(x
\right)^{6}+\left(8 x^{6}-18 x^{5}+20 x^{4}-42 x^{3}+36 x^{2}-46 x +6\right) F \left(x
\right)^{5}+\left(4 x^{7}+7 x^{6}-62 x^{5}+128 x^{4}-34 x^{3}-87 x^{2}+106 x -15\right) F \left(x
\right)^{4}+\left(80 x^{5}-276 x^{4}+242 x^{3}+28 x^{2}-124 x +20\right) F \left(x
\right)^{3}+\left(4 x^{6}-12 x^{5}+145 x^{4}-258 x^{3}+68 x^{2}+76 x -15\right) F \left(x
\right)^{2}+2 \left(x -1\right) \left(2 x^{4}-3 x^{3}+40 x^{2}+8 x -3\right) F \! \left(x \right)+x^{4}-2 x^{3}+16 x^{2}+2 x -1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 108\)
\(\displaystyle a(6) = 512\)
\(\displaystyle a(7) = 2496\)
\(\displaystyle a(8) = 12382\)
\(\displaystyle a(9) = 62168\)
\(\displaystyle a(10) = 314934\)
\(\displaystyle a(11) = 1606572\)
\(\displaystyle a(12) = 8242198\)
\(\displaystyle a(13) = 42486590\)
\(\displaystyle a(14) = 219906314\)
\(\displaystyle a(15) = 1142305670\)
\(\displaystyle a(16) = 5952728554\)
\(\displaystyle a(17) = 31110248532\)
\(\displaystyle a(18) = 163017382982\)
\(\displaystyle a(19) = 856278856638\)
\(\displaystyle a(20) = 4507847650308\)
\(\displaystyle a(21) = 23780918456208\)
\(\displaystyle a(22) = 125699810227774\)
\(\displaystyle a(23) = 665633681038582\)
\(\displaystyle a(24) = 3530890580627812\)
\(\displaystyle a(25) = 18760299474128026\)
\(\displaystyle a(26) = 99830649520649556\)
\(\displaystyle a(27) = 532012700429583354\)
\(\displaystyle a(28) = 2839110073142390558\)
\(\displaystyle a(29) = 15171033738149132116\)
\(\displaystyle a(30) = 81169626757907654142\)
\(\displaystyle a(31) = 434802427240363209198\)
\(\displaystyle a(32) = 2331775287493225494206\)
\(\displaystyle a(33) = 12518594084100965203324\)
\(\displaystyle a(34) = 67278719914141869126678\)
\(\displaystyle a(35) = 361937516669295400361282\)
\(\displaystyle a(36) = 1948968269930130709791556\)
\(\displaystyle a(37) = 10504462452172836071858162\)
\(\displaystyle a(38) = 56666237806384217946649492\)
\(\displaystyle a(39) = 305943261859775912496646300\)
\(\displaystyle a(40) = 1653136407652662916581527996\)
\(\displaystyle a(41) = 8939513228544237945489689480\)
\(\displaystyle a(42) = 48377481953652978800571275258\)
\(\displaystyle a(43) = 261989785974132841948206202862\)
\(\displaystyle a(44) = 1419793929572571512825714024276\)
\(\displaystyle a(45) = 7699364219090799125639611473390\)
\(\displaystyle a(46) = 41779410753457759399953250455404\)
\(\displaystyle a(47) = 226849320916018280684211112586068\)
\(\displaystyle a(48) = 1232453978834042112255899648613720\)
\(\displaystyle a(49) = 6699660408802115768008375341921526\)
\(\displaystyle a(50) = 36439713781294494989205696435882596\)
\(\displaystyle a(51) = 198302809611690368448174843920989988\)
\(\displaystyle a(52) = 1079708619133359649686289111536135460\)
\(\displaystyle a(53) = 5881667617318336974719204774572637086\)
\(\displaystyle a(54) = 32055559852968981307825316359535271022\)
\(\displaystyle a(55) = 174786679945710056736777031696590696274\)
\(\displaystyle a(56) = 953473862425541469211548192715423245224\)
\(\displaystyle a(57) = 5203534683963308976585395122806026246552\)
\(\displaystyle a(58) = 28410004831301089002438838805497134855784\)
\(\displaystyle a(59) = 155174948290996402625506032406486349950126\)
\(\displaystyle a(60) = 847898497157319301088991787567493921369334\)
\(\displaystyle a(61) = 4634819446562959921465529763643908716155460\)
\(\displaystyle a(62) = 25344483439048920651617164536021813566620594\)
\(\displaystyle a(63) = 138640756509660316406784011503406776251102650\)
\(\displaystyle a(64) = 758666019800455898894649181755436185393776398\)
\(\displaystyle a(65) = 4152963953842347348773744745263238467792828452\)
\(\displaystyle a(66) = 22740984719754352405174804203399674031858147358\)
\(\displaystyle a(67) = 124566103637732311039126428263011950345375244694\)
\(\displaystyle a(68) = 682536844567246389589877312054852782088049392936\)
\(\displaystyle a(69) = 3740969611339586736385345225070491921446223747866\)
\(\displaystyle a(70) = 20510229589258180807480555108733770121061845427836\)
\(\displaystyle a(71) = 112481647149131036766375073433856979932047545901152\)
\(\displaystyle a(72) = 617041385702582885604335191818253237575097638651940\)
\(\displaystyle a(73) = 3385830436509172065458191011400105448102329071918506\)
\(\displaystyle a(74) = 18583663202334515544672305234027981498020035619123768\)
\(\displaystyle a(75) = 102025727105138124468280880189869297389744227730387236\)
\(\displaystyle a(76) = 560270135196768784092577296755045142330775356735626124\)
\(\displaystyle a(77) = 3077456382221083298039198629794055819861730385484727472\)
\(\displaystyle a(78) = 16907926573972718519314186446267070972396808436878051428\)
\(\displaystyle a(79) = 92915948623576826987216935566397134925942295714007124604\)
\(\displaystyle a(80) = 510727431138142145301602643837468379561293718337837455788\)
\(\displaystyle a(81) = 2807920061546951991952464529311359104242038110226226751776\)
\(\displaystyle a(82) = 15440972265344428680180342416642355567108078700101641811098\)
\(\displaystyle a(83) = 84929131864567548285395181232402532005994312366029941652994\)
\(\displaystyle a(84) = 467227860918016936492791941216589308494964424418547512178464\)
\(\displaystyle a(85) = 2570920949805897940902105089217690837665251132032656135619602\)
\(\displaystyle a(86) = 14149290610888287040900652080498457617299440447712383474611292\)
\(\displaystyle a(87) = 77886939008259661862346071066211196539632607397853761150654560\)
\(\displaystyle a(88) = 428821715110557048013544061444523326130773577902442676339003008\)
\(\displaystyle a(89) = 2361398399391291700323498805052717197863278009945787205314239406\)
\(\displaystyle a(90) = 13005899011759990452273248338443413893878679738372497181742637040\)
\(\displaystyle a(91) = 71645417882123683522124971960378536900102920528647246724726223616\)
\(\displaystyle a(92) = 394740564222477252310548879857294601655255025513043592076831585120\)
\(\displaystyle a(93) = 2175248140357780664907542886270198312202255039288358577221255704708\)
\(\displaystyle a(94) = 11988863925493528852371774943538237204721129568305920621414187612480\)
\(\displaystyle a(95) = 66087290194149736941527483726939211973475257515478434339749376930932\)
\(\displaystyle a(96) = 364356989304500435046570857865441677323840632582573169052109004702012\)
\(\displaystyle a(97) = 2009111837333771928158576309555751927989040762151599957923889517931150\)
\(\displaystyle a(98) = 11080200273229253366944253129217662294367972522989335070250198437050340\)
\(\displaystyle a(99) = 61116191234042631986998809283994835597867319721561667523421028543310064\)
\(\displaystyle a(100) = 337154411357607412625021649796766575258021599518953868308507271144721292\)
\(\displaystyle a(101) = 1860218951087313366781077854415765211701321976213816879646885945608683264\)
\(\displaystyle a(102) = 10265041970821065769868218401389042232839383098858038817134197432241019740\)
\(\displaystyle a(103) = 56652316094623213313456643071132920456910950848357494884546237976178933416\)
\(\displaystyle a(104) = 312704223198846767941584365598947113000880422669880443980658510164132299952\)
\(\displaystyle a(105) = 1726266543089994010734078893145819920789384172293722265098864566027807532174\)
\(\displaystyle a(106) = 9531009760288515817023558330259465518700402650587187625159518387117759895438\)
\(\displaystyle a(107) = 52629092613852267872403663382643236299437755256519467357020796198959091685522\)
\(\displaystyle a(108) = 290648268196636744601422255663081110617493149263079806844620949454103506887484\)
\(\displaystyle a(109) = 1605326945427730818743527030711689592620627373124596928035046788459915737200658\)
\(\displaystyle a(110) = 8867724366727647689040590075641227098188210211493282784069892798862207654637064\)
\(\displaystyle a(111) = 48990612765586445454174804384466545623109784436014930067562111820312068798938868\)
\(\displaystyle a(112) = 270685280080698671470384487298030578327135450677049815877679879780155768207609708\)
\(\displaystyle a(113) = 1495776131990083686063644380144809286857035651928871414951768078122746697743485412\)
\(\displaystyle a{\left(n + 114 \right)} = - \frac{2 n \left(n - 1\right) \left(n + 1\right) \left(2 n - 3\right) \left(2 n - 1\right) \left(2 n + 1\right) \left(2 n + 3\right) a{\left(n \right)}}{18025 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{n \left(n + 1\right) \left(2 n - 1\right) \left(2 n + 1\right) \left(2 n + 3\right) \left(1342 n^{2} + 7579 n + 10546\right) a{\left(n + 1 \right)}}{36050 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(n + 1\right) \left(2 n + 1\right) \left(2 n + 3\right) \left(542944 n^{4} + 6923824 n^{3} + 31722071 n^{2} + 62042543 n + 43895040\right) a{\left(n + 2 \right)}}{72100 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(991682 n^{3} + 331699297 n^{2} + 36976209505 n + 1373744326466\right) a{\left(n + 113 \right)}}{2575 \left(n + 113\right) \left(n + 115\right) \left(2 n + 227\right)} - \frac{\left(697127332 n^{5} + 384886948984 n^{4} + 84993768143363 n^{3} + 9383910176288672 n^{2} + 517992512179247721 n + 11436575801983768728\right) a{\left(n + 112 \right)}}{10300 \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{3 \left(177455295588 n^{6} + 116464729763796 n^{5} + 31847171928163447 n^{4} + 4644386058140216245 n^{3} + 380969821120207946677 n^{2} + 16666096343132008203559 n + 303772401984444018485328\right) a{\left(n + 111 \right)}}{144200 \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2 n + 3\right) \left(195269104 n^{6} + 4287981912 n^{5} + 37951520566 n^{4} + 173723726451 n^{3} + 434662943887 n^{2} + 564503845914 n + 297640212240\right) a{\left(n + 3 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(8032410462 n^{7} + 247885617784 n^{6} + 3196554772278 n^{5} + 22375505606860 n^{4} + 91975250566878 n^{3} + 222298395336346 n^{2} + 292802159401557 n + 162257725797615\right) a{\left(n + 4 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(435421321516 n^{7} + 16018918063932 n^{6} + 247793031584728 n^{5} + 2093806210031340 n^{4} + 10456174092389179 n^{3} + 30905323939489608 n^{2} + 50120852955635967 n + 34439426850070620\right) a{\left(n + 5 \right)}}{2307200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2925300507296 n^{7} + 2221937436414372 n^{6} + 723275872372315946 n^{5} + 130795026630860187225 n^{4} + 14191142115451959292004 n^{3} + 923809326360072649611303 n^{2} + 33408922019828983475668734 n + 517789737339014658723976080\right) a{\left(n + 110 \right)}}{20600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(59282492152448 n^{7} + 2903270994200192 n^{6} + 59374366403858408 n^{5} + 659889134739356480 n^{4} + 4317011358002885297 n^{3} + 16660585026347575838 n^{2} + 35181432591196203237 n + 31401000463297288320\right) a{\left(n + 6 \right)}}{18457600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1190381941583124 n^{7} + 896189436448782896 n^{6} + 289151042499851668983 n^{5} + 51828119104221363776285 n^{4} + 5573726380144335038271051 n^{3} + 359637826598942553619196099 n^{2} + 12891423099846164009041198962 n + 198037697908073036628105991080\right) a{\left(n + 109 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(6498995707009408 n^{7} + 359162042293136320 n^{6} + 8320383294379772728 n^{5} + 105146959463301029680 n^{4} + 785031415490404908427 n^{3} + 3469902648239431139365 n^{2} + 8420839606440888909162 n + 8666408546154801454320\right) a{\left(n + 7 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(27280394905717700 n^{7} + 20356788814589871490 n^{6} + 6509985968697820736351 n^{5} + 1156557666238573894692775 n^{4} + 123280605446538060772269515 n^{3} + 7884287771053232870671088455 n^{2} + 280121650244039181603096159594 n + 4265236512448618083090200073720\right) a{\left(n + 108 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(253397876862929688 n^{7} + 187415001319632187822 n^{6} + 59404408309205398345410 n^{5} + 10460446951349442861128665 n^{4} + 1105154058475349650685300292 n^{3} + 70054564130526758802142855753 n^{2} + 2466989715182410292925183560370 n + 37231563051594000480105546894720\right) a{\left(n + 107 \right)}}{144200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(636002244963595056 n^{7} + 40123168888278562688 n^{6} + 1058790065291032757928 n^{5} + 15229709478794029016000 n^{4} + 129427563487412703438639 n^{3} + 651528192789211619014952 n^{2} + 1802251444601875994705817 n + 2116409365819816443147240\right) a{\left(n + 8 \right)}}{590643200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(15546719011007535014 n^{7} + 11396974593856921198626 n^{6} + 3580586921723275088127713 n^{5} + 624938053927920369819106785 n^{4} + 65442759333090679957772926151 n^{3} + 4111763574808026957297818294829 n^{2} + 143520133406027976188570800323042 n + 2146898057950705551485178512849760\right) a{\left(n + 106 \right)}}{576800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(20955653353274850736 n^{7} + 1497415255794134100592 n^{6} + 44622669446668098622312 n^{5} + 723910869321102650813920 n^{4} + 6936474641789238894840079 n^{3} + 39380610444412048975728733 n^{2} + 122933626469991744906066798 n + 163050404171482716474181680\right) a{\left(n + 9 \right)}}{2362572800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(65294688831444327280 n^{7} + 5122219280980344884432 n^{6} + 168208128747977808688597 n^{5} + 3016904785493450822857040 n^{4} + 32051609335876056670812880 n^{3} + 202277937383767469121275588 n^{2} + 703557180000267113209576233 n + 1041879422494263781483765290\right) a{\left(n + 10 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(199170089872977793879 n^{7} + 144726008514730222584298 n^{6} + 45069611998282688417381809 n^{5} + 7797226016208727267152335905 n^{4} + 809355404721045698758495199506 n^{3} + 50405889421948416695491523422177 n^{2} + 1743983693638418918109991951695786 n + 25859398701621766085817418401886800\right) a{\left(n + 105 \right)}}{576800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{3 \left(300728112819339428936 n^{7} + 21815953237878204301456 n^{6} + 674446565113028803632677 n^{5} + 11547960350526924287141010 n^{4} + 118530040529736178316808499 n^{3} + 730685897225890480172975894 n^{2} + 2508705755348250575898753568 n + 3704892972899839000896030240\right) a{\left(n + 11 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(4286553190058272378384 n^{7} + 3087814466885815922336648 n^{6} + 953256980397374528626480618 n^{5} + 163489139159321734159821577745 n^{4} + 16823320232811369739293836261236 n^{3} + 1038672008967164584342539690834647 n^{2} + 35625856943592528973646518083633762 n + 523682577665335518432659280252029520\right) a{\left(n + 104 \right)}}{1153600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(15392142479152734715429 n^{7} + 1977224230264209398940636 n^{6} + 94559115320256301376438140 n^{5} + 2333851939503961196959641030 n^{4} + 33025368611924255988690213301 n^{3} + 271874123934727450637511094854 n^{2} + 1215973890390755495585256378090 n + 2291798702007390643310569523400\right) a{\left(n + 12 \right)}}{9450291200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(77434454999216988557582 n^{7} + 55309004238282785245738672 n^{6} + 16930674892245284707608863015 n^{5} + 2879213287909309290976687103005 n^{4} + 293777355814746744232851262454093 n^{3} + 17984887624562192247166900961080963 n^{2} + 611671625309597672402602954410152910 n + 8915503493250593147527621577420937840\right) a{\left(n + 103 \right)}}{2307200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(581172923720863969886610 n^{7} + 411799418381361355077307540 n^{6} + 125049902411821576494403086366 n^{5} + 21096118527177237089708020144825 n^{4} + 2135340329894851235489998372517670 n^{3} + 129681197878839745438768779480524215 n^{2} + 4375307218559986126568023057335233094 n + 63264118353669816932603419293131413200\right) a{\left(n + 102 \right)}}{2307200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(1447612012691716065576785 n^{7} + 173648243405428343224164093 n^{6} + 8330228711990739993599595071 n^{5} + 212661194946145650597172287735 n^{4} + 3163193977269251883457359489350 n^{3} + 27634968904582247210903108518422 n^{2} + 131973030082064959576928865156924 n + 266684624991595288363274912421360\right) a{\left(n + 13 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(7045381350703186539102808 n^{7} + 4957463716274363602400791608 n^{6} + 1494957844626068845054956314587 n^{5} + 250447692180218410557381563866095 n^{4} + 25173732024141080807973816090151807 n^{3} + 1518171031928348295192713871709088337 n^{2} + 50864245590810070216412751636538089438 n + 730329910973407101019833708563790432360\right) a{\left(n + 101 \right)}}{4614400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(7143531608156706055904355 n^{7} + 899791707846186223397681926 n^{6} + 45773637160252200819504411450 n^{5} + 1245292908985396496590917431110 n^{4} + 19794449616986806524880568697645 n^{3} + 185117703094420103552177623736284 n^{2} + 947358917470345909906155472465650 n + 2052923501089416818498455327136580\right) a{\left(n + 14 \right)}}{18900582400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(10537212667138199595291190 n^{7} + 7504947002625977369153851760 n^{6} + 2288337190132716471977518183849 n^{5} + 387236815663577542271994977194205 n^{4} + 39279686753479950900152579840813635 n^{3} + 2388463160416117640802559360605913835 n^{2} + 80617028547404017572873193617072174126 n + 1165222603116549864612214765075675983960\right) a{\left(n + 99 \right)}}{659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(12382719673821028957825874 n^{7} + 1669933661206858460079478298 n^{6} + 90763595036893137260165556899 n^{5} + 2634987092006704013656891920830 n^{4} + 44657948099432675455619084129261 n^{3} + 445011457647932506140095746319462 n^{2} + 2425324442060035989675263492576736 n + 5594362162372414592032155012956160\right) a{\left(n + 15 \right)}}{5400166400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(31798589693426713004412398 n^{7} + 22289003376625234609664378620 n^{6} + 6695187704865319349056878664097 n^{5} + 1117194960915153220134489035610085 n^{4} + 111844217118297138840588441237229847 n^{3} + 6717643299156299155949646203539939855 n^{2} + 224138212254628786080738948369895813698 n + 3204841902052122914387935369531473299880\right) a{\left(n + 100 \right)}}{4614400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(705557274383542691876654024 n^{7} + 455280088758101734025243701776 n^{6} + 125485057032889202355768854690135 n^{5} + 19142222784484647519038984347730265 n^{4} + 1744543519948465462971505508938255331 n^{3} + 94927138242919411446128564311900025439 n^{2} + 2853389090638634623006839106416231160710 n + 36514977138630547226600210440302650639040\right) a{\left(n + 98 \right)}}{9228800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(706401683276030026109111143 n^{7} + 97254204503505364524546362144 n^{6} + 5435833485457564029258206702494 n^{5} + 162786196428915023736621207614270 n^{4} + 2849119895773506566366823078836887 n^{3} + 29320671724323149657902954496742386 n^{2} + 164922651163935213924251817869536836 n + 392162352618552718266752158799017200\right) a{\left(n + 16 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(11623386790740663821156229953 n^{7} + 7694074894084202809792173928620 n^{6} + 2181699354803648723093857859522876 n^{5} + 343512934312453434265725770820148530 n^{4} + 32435061927019260223377505668791271047 n^{3} + 1836534528466442957496118542261334416870 n^{2} + 57737894380496013891565681549379016795144 n + 777469981898666460032183506839870819312000\right) a{\left(n + 97 \right)}}{9228800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(13881406573901169252847408391 n^{7} + 1388787877101232583909966058691 n^{6} + 55459479353575553454423733002593 n^{5} + 1083532834425988744886150378811985 n^{4} + 9284005603206469447856831701895684 n^{3} - 6621441404887307760489433646921456 n^{2} - 655099475079516726963510319654852248 n - 3189875915969372578666609888052676480\right) a{\left(n + 17 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(81945378237812810755389687064 n^{7} + 6788512227000276829205876134457 n^{6} + 176024060234513147996198652884203 n^{5} - 417582434878146339952079893267045 n^{4} - 109647255241506608324052130458339539 n^{3} - 2281242009998239529338939274956048372 n^{2} - 20226340883928892205274795433249992888 n - 68692745298889588529738240169480312840\right) a{\left(n + 18 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(148389353110896973162330405549 n^{7} + 97314051231983128557224037251882 n^{6} + 27346951786518295320047763947115949 n^{5} + 4268795833084645234150925814042508400 n^{4} + 399748522415285675421501682281285678106 n^{3} + 22456987077813952458019890832996332731078 n^{2} + 700766832428666740187954093648210255420556 n + 9370153476073855545246512043566862031884000\right) a{\left(n + 95 \right)}}{2636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(179250562662907310864520013308 n^{7} + 118320327509035368325935934956068 n^{6} + 33464090842082726496814048019162559 n^{5} + 5256789126358568889318804466378817210 n^{4} + 495341010236222503680517670665774912197 n^{3} + 27997976564045999475012536851749008464562 n^{2} + 878941824842274757054811434283668874730816 n + 11822151606737037011230319251701531182037360\right) a{\left(n + 96 \right)}}{18457600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(930991143225185452135881825741 n^{7} + 88361790170701822618784967755267 n^{6} + 3079468895143650028549752420084558 n^{5} + 37536517180692708183288545533867085 n^{4} - 388991898557249645737687276451367081 n^{3} - 16577242033227521089422481813441087642 n^{2} - 179242230227352192766505957092291233768 n - 680911601311455261568377649367885729280\right) a{\left(n + 19 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(5118262831657695512939470635491 n^{7} + 3329240485926061575039005195898838 n^{6} + 928022588814875018552351946385058516 n^{5} + 143703017987502016883967633125541211045 n^{4} + 13350262399282508729580046543950916400219 n^{3} + 744096236514604104570299392571896953295297 n^{2} + 23038746251936504998117075769063995788871674 n + 305684541960697911883003636233715968747343320\right) a{\left(n + 94 \right)}}{18457600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(14226538980488013724985225957679 n^{7} + 1502687551613096449399209603444728 n^{6} + 62301737384530303747750494659330286 n^{5} + 1195883310619095045829613740235804150 n^{4} + 7227754778548153994490543344699731011 n^{3} - 102746650246810990527357040873687291918 n^{2} - 1878182489446807391638328085042841336176 n - 8580754649054358877560189371013486951360\right) a{\left(n + 20 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(46930999688115237622863974776096 n^{7} + 30221993510078300250120579175785976 n^{6} + 8340869005107293861750465831512351399 n^{5} + 1278874731499473062562281800632485632030 n^{4} + 117651184420436897400204743322680763194869 n^{3} + 6494047990747495347824834146505862519067894 n^{2} + 199141191765353900454276092617136963396396016 n + 2617146944316621055001152968002888295616498080\right) a{\left(n + 93 \right)}}{36915200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(164636284945955547226264254034320 n^{7} + 10996338360395130131307570875734805 n^{6} - 113802610529113226334008945414412429 n^{5} - 31166318425088491218639446569989734605 n^{4} - 1199665700038298553371752383767294921535 n^{3} - 21610462914474335005545890128962442446160 n^{2} - 193725280697380348896891706370800202522076 n - 698234166364808129506919715447052395012000\right) a{\left(n + 22 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(217250108322170297033220155138521 n^{7} + 138202079548022954587310351974114837 n^{6} + 37681244634438719672670664326280960360 n^{5} + 5708163516613135981666240806174769500700 n^{4} + 518862097932548897626970216806981872423289 n^{3} + 28300359755186922803925785691534825208265023 n^{2} + 857615741658357706022029393658608341901888830 n + 11139099218394674164240206847603196370076126920\right) a{\left(n + 92 \right)}}{36915200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(268091721835041293760227088406031 n^{7} + 29716219647426177373179184172009931 n^{6} + 1304243329018267883581115608285507841 n^{5} + 27211112086794315770144928125459369505 n^{4} + 213287973761203306481279104436016514544 n^{3} - 1473038562723903620069423914310453415276 n^{2} - 37059893954641951333567579858607440972416 n - 184558606794442973810146991520401564385600\right) a{\left(n + 21 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1790076189080935471890839403774178 n^{7} + 280029758990644851672745038656718581 n^{6} + 18585784464150579470843058027552404485 n^{5} + 677910272212734342367262972780335543805 n^{4} + 14658281002856664473265235578075698577577 n^{3} + 187562714628393496385933793451526719941374 n^{2} + 1311643737788190293654856590567399403957480 n + 3852272839998156602135375840501913387919200\right) a{\left(n + 23 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2095007184414965569264744701729724 n^{7} + 1315069996294958580751367520654745640 n^{6} + 353815305985454609476987252001684577967 n^{5} + 52890075612596939765823525353604848782355 n^{4} + 4744238155129072961535310767784629888562171 n^{3} + 255361037231121735930406479547413072309617285 n^{2} + 7636880824874246334558249032398380512150437698 n + 97892057404075434418065630237797632276065110760\right) a{\left(n + 91 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(10079041113390293348632464647045375 n^{7} + 6247576473157088086057755206829714111 n^{6} + 1659791506791013633311503675726362343996 n^{5} + 244991421556924609007707320707390935244250 n^{4} + 21698458851289035326365041790568802148174415 n^{3} + 1153158828687847388907412687252518091645327839 n^{2} + 34049396613702210826327630240768691922482875734 n + 430910509031565785496056421761922156513661341480\right) a{\left(n + 90 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(40848439746428368535590861834287351 n^{7} + 6302459378831153241367993820481017818 n^{6} + 413369437851950456911568455922602397292 n^{5} + 14915188372257130331222736083180076071980 n^{4} + 319017257057909509459338460299135637563069 n^{3} + 4031949410663739121691438702756568828983722 n^{2} + 27752588308770002728538724148324182152234448 n + 79689148521780611700661021190143063997958720\right) a{\left(n + 24 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(45033836252444237548540060619659676 n^{7} + 27613061362400871672511560168975984387 n^{6} + 7256353773562483024146734716721714469440 n^{5} + 1059390447738205652956516809190884113192385 n^{4} + 92800927873338983718034274426658980988062324 n^{3} + 4877625693622459740583463061467897344809975708 n^{2} + 142430175160990666104741719607333659833010843520 n + 1782501671185645142264800282151069460661918485120\right) a{\left(n + 89 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(351525655183451471477579045578503788 n^{7} + 213683503762848461569509049912729184810 n^{6} + 55666269411529814835306557622131236765457 n^{5} + 8056108251913975360300232870298237479245760 n^{4} + 699511608241706359393377365464388489038347347 n^{3} + 36441956312298223979306085190865771754721921670 n^{2} + 1054684347218829645916551904756578539556133709808 n + 13081387559325122066298148334815977475011496008960\right) a{\left(n + 88 \right)}}{147660800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1095280203343421461378438383748612519 n^{7} + 173811823291325312925614129116253031779 n^{6} + 11727489946070306492753863131527145802561 n^{5} + 435376251662329895952350579077620074514665 n^{4} + 9582603641586608678759056740262986979916176 n^{3} + 124643885798168252051622041384311067323243196 n^{2} + 883044173092497051832815623748380522617063824 n + 2609810971106315683357155369236353377158851200\right) a{\left(n + 25 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(1129759908440396269698729468364231571 n^{7} + 683231454434232711456384803271739975920 n^{6} + 177058711727158588360443825542309044221758 n^{5} + 25488220138234948464450474165576509785098270 n^{4} + 2201197223983951318179968496139010445826249499 n^{3} + 114045028023525631684348167717978828932547837510 n^{2} + 3282227379043573197092740059924803908162158728352 n + 40479235842811791938971405833394839846639936530640\right) a{\left(n + 87 \right)}}{147660800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2668409199997381366067145274031251444 n^{7} + 437221737769582484432078402472939745437 n^{6} + 30458130144588051620114877822376033506385 n^{5} + 1167420049143946208370038427016160395122915 n^{4} + 26528360576634250024550459507065368267258271 n^{3} + 356271050958986929584410853620318591897040888 n^{2} + 2606285648134507551220014959403877851697755300 n + 7955677774148553387002783816971418235498428880\right) a{\left(n + 26 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(4605451486496995920907200134474504681 n^{7} + 771705878661999107666177638875731288545 n^{6} + 54880764674700078606745248200346654825053 n^{5} + 2142531275528891820290419551281608683529225 n^{4} + 49439762883523704699625486812089894849912594 n^{3} + 671373388016748461244547427274791144377213930 n^{2} + 4934823887184765705754482720230959264365373452 n + 14981903010273296390163768930963149391087966960\right) a{\left(n + 27 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(4969541312119296046626379778625700551 n^{7} + 3301999317805162981368935502661089289498 n^{6} + 927496760905896137664300117332146427893014 n^{5} + 143153945074886510430538710693818717552550865 n^{4} + 13138044724878938703948831305068452908991433929 n^{3} + 718023437924380348994032518611491969711332095377 n^{2} + 21662035751227219487193179385724418577272575628166 n + 278547078885198221259671976576692193776461192503720\right) a{\left(n + 85 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(5332244014221056365733675166912867730 n^{7} + 3239209004485285246759640294066275872686 n^{6} + 842799767965309713904140661631737748910301 n^{5} + 121753491188134807627522484227088346444572480 n^{4} + 10547362348502897013741729586454114832479198725 n^{3} + 547925062331306657060308782075212093907881948414 n^{2} + 15805141493006916609490087221475188252245617973424 n + 195289781041965335068138031749076387621104589103360\right) a{\left(n + 86 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(10948085483273793625075305800526819418 n^{7} + 5831723484043427111086608756585099663671 n^{6} + 1320163629729934481235468896365765753264271 n^{5} + 164348933583124815931438708646171542172807150 n^{4} + 12122628518221308180103695608539937066916076277 n^{3} + 528026644910002771567274662818937231753737494099 n^{2} + 12513424498979756312046561184622726636291969288554 n + 123515768754261637902749764707598440237285163516920\right) a{\left(n + 84 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(28319434963581509614132492217885441589 n^{7} + 4416991748550759661702159518504235990817 n^{6} + 282329286632363558350135244984857880895963 n^{5} + 9333794494728283691672297646533902311443795 n^{4} + 161932342255679805284477037374138657617501896 n^{3} + 1184238346630583504536086680308494342031537268 n^{2} - 2062336140508055075403704084563806618068667888 n - 55924753298427284937911934197827863858240029760\right) a{\left(n + 28 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(58578464363441498880373036794105961511 n^{7} + 12267926793184634786196963414489731378129 n^{6} + 1092182558257588251537000055548459144972807 n^{5} + 53616487006108562574244255743090379259255755 n^{4} + 1568206263981709679921615185030732693773260994 n^{3} + 27336248325973618540950893495133383076135127356 n^{2} + 262996916251038489490030560185129183430443695048 n + 1077327251113474135257834439948323322340100101280\right) a{\left(n + 29 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(247971745920584070707593388235609458196 n^{7} + 137222684542943559574964689044951592132949 n^{6} + 32490040989217177835314679711704433867666238 n^{5} + 4265990075652071223068583576813445030351258505 n^{4} + 335421401032836405516678447947389432230372684474 n^{3} + 15790139083846827598820537336568285699401509565546 n^{2} + 411996252438190719822288357842070950306295679166412 n + 4595221214383299883903131637729349290471794051018480\right) a{\left(n + 83 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(976395238344689245131114413276465780602 n^{7} + 199078680137136949457034204830675519204463 n^{6} + 17346462896329030123131508944927957790021603 n^{5} + 837123413741815383611541573576345583237618245 n^{4} + 24158374190117353975081057677828996615197713183 n^{3} + 416780816142386786421408911696147509092219527652 n^{2} + 3978519197646078005209584372578368551771577812012 n + 16203433823538256142124480172668378710934228462480\right) a{\left(n + 30 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1051344692512353686634869286010928997718 n^{7} + 583996504186475555027289523937721006901796 n^{6} + 138970209144966613663683321833582355543379060 n^{5} + 18364494515232097079543637372041932208527435715 n^{4} + 1455461432958116957738792950031290602860639787052 n^{3} + 69180145287657106137362695536409965670975218234329 n^{2} + 1825962215495782581366902503634783474204309915783490 n + 20645303707976746533002998464845911878505137616572960\right) a{\left(n + 81 \right)}}{84377600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2165020012264906350583571211384917867663 n^{7} + 1203140484562399910752052911404132583100441 n^{6} + 286333681154815667591915836661770834116238694 n^{5} + 37828445472622641057575766375283026614294304575 n^{4} + 2996132060876716120051361210143935553891544066627 n^{3} + 142259411588235116454787350159164614986780080848244 n^{2} + 3749164109710853682677161480815815313456056689938276 n + 42305290933274181892719731157050942311248403779458160\right) a{\left(n + 82 \right)}}{590643200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(11380666334180007698356726745567016541731 n^{7} + 2364531538672090147021873951483769333977319 n^{6} + 210005342612555766623944913348665654613263245 n^{5} + 10332644830981963312544395252363349320947956765 n^{4} + 304072363639263797605545811029590471780331174264 n^{3} + 5350168608781622107186512932296257986071096623236 n^{2} + 52091897578134134243654546715424823409206203973280 n + 216398191268732894028159959590080953726450951922240\right) a{\left(n + 31 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(24140113671562213183641651398693646694724 n^{7} + 5133705493267148137823526286964151724757079 n^{6} + 466599301043828810349482467962433319939260931 n^{5} + 23488046455128386529916424801662980545616174045 n^{4} + 706973132744108079485651807955953128486764167621 n^{3} + 12718080483492730152841080073558339384198138936476 n^{2} + 126546451937849508721100328453007728450219755594004 n + 536914068627748317948046867715977297964453501631120\right) a{\left(n + 32 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(30279359085287115941690096812019342225926 n^{7} + 16825260452578743656368313391045789743440763 n^{6} + 4003429446452954856763549212318765469460836144 n^{5} + 528786313226990770153808810194190542738530224225 n^{4} + 41874177328608858476451596523232438638177550348414 n^{3} + 1988134631472510853535279389222080334143413983599272 n^{2} + 52404569456527731608823785559490631788627834353093576 n + 591596036374890217598637317093011370972813286979003920\right) a{\left(n + 78 \right)}}{168755200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(38027260942644223631229085981751385330667 n^{7} + 8242721922478640233889625989370165992576359 n^{6} + 762884565118144136650944061693129484913823837 n^{5} + 39061568835010506934872458280665371902396186385 n^{4} + 1194282490228846611101878526707399669735117130488 n^{3} + 21787694260459507718578006762528636599895330422736 n^{2} + 219401235378673316354941013945543511167965350858408 n + 939675375958144135915967755271165898190309121253120\right) a{\left(n + 33 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(41919195320389290741124306594637612568029 n^{7} + 23263654199554281896031907269095110295487813 n^{6} + 5531341620692969160085528331069718439657074812 n^{5} + 730423381133606005988885013339983519214129540405 n^{4} + 57854074586498476191097545500655404232592497194471 n^{3} + 2748577223125319222649826328987835866560625255848902 n^{2} + 72522438007520997205458102384695674190748259442944848 n + 819827408897516932440856562023195122566966127045963600\right) a{\left(n + 80 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(67622568734312037735920921688684269141341 n^{7} + 20400252149532509227241737786623787108260423 n^{6} + 2536058969160813443783030666708883625624813435 n^{5} + 170433422319304246404667962148081751844462852705 n^{4} + 6735515221154990123724152263698486423749909196544 n^{3} + 157266741067595733808216656907517891402145964138392 n^{2} + 2015217170132415436975969518464749069287354265384920 n + 10957682313507041896216996663950536001321392715608160\right) a{\left(n + 35 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(73191231794024487168400242045691266808113 n^{7} + 15735424179905142579360390087582343971850699 n^{6} + 1435689425210787346578266142474475535732439933 n^{5} + 71899358768547713016340231103313535494756734575 n^{4} + 2127762730687631508042472580473108258728344887782 n^{3} + 37038979091073401373890877023746937674717876981486 n^{2} + 348692747116537660218126849938157614432253322075092 n + 1353632141047005632462548144310739104859177470406720\right) a{\left(n + 34 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(102270377384180963371324630125164072920668 n^{7} + 56747540943907380653955210761821055052410753 n^{6} + 13488930837470331009799180774569154713417597402 n^{5} + 1780534906694166978990694557740157582021425445515 n^{4} + 140959486894349502925171232151582702849297319051482 n^{3} + 6692884337696488744201559033293519916159522504411852 n^{2} + 176476891312591145087246099801451549993736365500533128 n + 1993505515211420775591824619633286107160323965114823360\right) a{\left(n + 79 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(125938055884030367078634798709961663759534 n^{7} + 20805391786797173436129443476079730811726337 n^{6} - 5690434766731978255462503166515360631485100891 n^{5} - 2028769899356929890306612909742032393238285117165 n^{4} - 252465968755922746085734203900769259553760590985639 n^{3} - 15938820092065906322319039071311612562259793503620932 n^{2} - 514431290627337639228839876959576996884994063872824844 n - 6769527820709493002221122357062686548502538803120582800\right) a{\left(n + 75 \right)}}{2362572800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(209417765594653766494023387596276496534210 n^{7} + 53317596026562878340697173291032774047363067 n^{6} + 5814268185922546100517155972204342551350125739 n^{5} + 352045576674626977026445621224277555396408952345 n^{4} + 12782417028102629737353314916091630712439138722295 n^{3} + 278319806441469712068721308552615316928686864240868 n^{2} + 3364921615320371784850422679529127724145119345062996 n + 17426384913927445758071633767591219288321245237275520\right) a{\left(n + 36 \right)}}{86402662400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(353847365067230110669283827848340057285123 n^{7} + 197675198867424483592680551551514157438415382 n^{6} + 47243246867695242553212880514486499286183582084 n^{5} + 6262397990058167434267794004371678992079397372490 n^{4} + 497313188111030543365427873543774062271947040207017 n^{3} + 23662104297927797768190241039857160668600634039184348 n^{2} + 624637389777053622449389291917261937555243069033003476 n + 7058075420889055297170021077225864792595097924679241840\right) a{\left(n + 77 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(781505460202192114122612253211630926124851 n^{7} + 446806463633945002189347244977891787345306909 n^{6} + 108926726654840802791673535872248061272600361931 n^{5} + 14687706077321710911352950455430206737238379966895 n^{4} + 1183656321416703002593119178525920371003310974048554 n^{3} + 57034214523752248922782651902664513778489396794234516 n^{2} + 1522005028647686036565249916272118138044099768696990984 n + 17357846702428100372910647811069889351115202027713505120\right) a{\left(n + 76 \right)}}{2362572800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{3 \left(2148902468188141337833598834238974317714731 n^{7} + 1100714878024868154076905896281925273870453537 n^{6} + 241111122227162006122794324463309413615073128027 n^{5} + 29277463821050556819506284242458214193485026073495 n^{4} + 2128267143134524163532891549199259303831546125394354 n^{3} + 92612037245980825280903001647317478402617368332954368 n^{2} + 2233563436753877999406434092868215790274276442506948448 n + 23028775920467395978467127260506765776230718792989409440\right) a{\left(n + 74 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(4318989130042068701099344511676699803104576 n^{7} + 1109202920416419239085571008610478372049442981 n^{6} + 122066388046989955161837613428108174189630339025 n^{5} + 7461740799508183699337796856036749676738077801055 n^{4} + 273631109961413632602384830142907829907799356638269 n^{3} + 6019640699732507490123764445103452521060575912499434 n^{2} + 73558057017616470095427436522135544711406596874050280 n + 385157889488139999722063846102894762014118058599173440\right) a{\left(n + 37 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(5737868693959871311810883464330477992191307 n^{7} + 3016959336258922083757257484438864345989383773 n^{6} + 678135957576256080294292818152808293417129526241 n^{5} + 84485830690419395624742406426553945639575519079935 n^{4} + 6301877968683946669048055478505793613298831674900948 n^{3} + 281475670785999587401724649197091904475047519021898452 n^{2} + 6971565419308018451081421549395620681855362151228956224 n + 73872811759933083141086449328613687817589299077585550080\right) a{\left(n + 73 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(20787536219945076033464851149064438901883181 n^{7} + 8134241724918395592672537612953600290633382137 n^{6} + 1270878065868011616329224585875824552988046984465 n^{5} + 96496483820928846769307282764731525740223258836005 n^{4} + 3078099958755454514295671195775739398972921336543694 n^{3} - 27341161390590540343218825293359108859599515062842262 n^{2} - 4343677536859698252034317340366947228688152240511627860 n - 81004367434470849166020166100443052268641876832109425600\right) a{\left(n + 71 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(21070136465423176600016960795454195883274589 n^{7} + 11600636976033032511243306818378757437045670883 n^{6} + 2711838944687976124752702428034992548799833570017 n^{5} + 349456361785326665321593442427169122610800566986255 n^{4} + 26841741524057414737171003797667979467891679720746326 n^{3} + 1230050947589981568892695474926269531056739194412043422 n^{2} + 31162375265470392445734739510194761123573982101863454028 n + 336892730359126945096431524616080540738386035087927746640\right) a{\left(n + 72 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(61419299296677462810202211840556951100102378 n^{7} + 28931365420259788686417809572255818411109016622 n^{6} + 5831492439805426498881623280063375121618388823537 n^{5} + 651913216990511930883310920802859559915594128454035 n^{4} + 43648022463802413360180869562162026521011893144204127 n^{3} + 1749999687969921189244493156723014386063933727494231103 n^{2} + 38896533586399293367680095559816266166439245450255339038 n + 369651718396044769132969981090404201808089439059214552920\right) a{\left(n + 70 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(74163044312741413657944698411624817199550029 n^{7} + 19434732893088061379156374262917080683555479397 n^{6} + 2182375245387310666999425025208997376256861961787 n^{5} + 136126477387651853085652870990374593722882103393135 n^{4} + 5093778506976514029344402450593433459043222559204096 n^{3} + 114345723138837406180551190339708045593618114844171988 n^{2} + 1425793282454232680776104352110953505591175050435318048 n + 7618048949280484601696720592939534850395432251173355040\right) a{\left(n + 38 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(167113450309733670955776919460003689680337179 n^{7} + 79398631799596353875592669067923716601931888285 n^{6} + 16162184763759045208313201018355988932624871306347 n^{5} + 1827168166840362433393589871066083054033874273445030 n^{4} + 123900683957773742845791251174170282491026029638785256 n^{3} + 5039495646689786247870441788765209584186979769437129045 n^{2} + 113840350307073983954442059340375417394308212030168913738 n + 1101788186625641622810366373443892522872377410097316741240\right) a{\left(n + 68 \right)}}{675020800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(265389237884645066623452536431860440391861231 n^{7} + 71168918874078532823012192521544246159840679061 n^{6} + 8178056359041241789755600352820655832478016531639 n^{5} + 521993283482051690879906187856506899108953375142575 n^{4} + 19987415348365273508790134302611270846251218625671914 n^{3} + 459116880897370089354391692223990844256451733115363844 n^{2} + 5857859518725009496351943328358223129827943421966291096 n + 32025600085476685051523357541187601154225061516161314400\right) a{\left(n + 39 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(277043774406959394533829226657096044352582101 n^{7} + 76095302536633656389864382864777399943389743379 n^{6} + 8956025780703704514430642719319738681637923264489 n^{5} + 585495061680754325372665702398700661849976653823865 n^{4} + 22961662164453550053874900481777673560712363513425834 n^{3} + 540198685150999844999646200498880094524725796206268836 n^{2} + 7059076996983530654061085039308905665227048297190180776 n + 39525737012746223040413255462811036019317831344992668000\right) a{\left(n + 40 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(559223099825954440751928426863585273109346824 n^{7} + 266400348481710156022515434495818713231432040594 n^{6} + 54365038491284709327833594487594722918550430451991 n^{5} + 6160852522417202442239973444015714266176304427249115 n^{4} + 418714809537715333437234074310514268283683257435352751 n^{3} + 17066654322976964130860083845742343464484346448831064251 n^{2} + 386280819523757894157695939800675457563530075016899035154 n + 3745190079067611864931727168348578149053274471939425662680\right) a{\left(n + 69 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(590660867545720825233740455837310290249663644 n^{7} - 297199846994135665390696721384863047040178093705 n^{6} - 129401821734170766020219953387196673171011104204488 n^{5} - 18688516305797478856741900296527963705376116571559205 n^{4} - 1375109786486785603397362837733749271793138779198456004 n^{3} - 55952758147747337761149230329710606377481465675729439130 n^{2} - 1204257248246954102694805061496568846578744832551331602192 n - 10749331372306091182115246716824176540703478171340251212720\right) a{\left(n + 54 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(846129934556644935690942523474969458280442105 n^{7} + 197961205215975356191251535913922466112970525230 n^{6} + 3246063421121862589574366703348787271032330989731 n^{5} - 3360006862907653323170255869906957454266366352132935 n^{4} - 452083753718826601061517591868139162923431066031893670 n^{3} - 26454733266810280597780147809510138302216481405344769055 n^{2} - 758186675225259279867553018451963564342900486867295651606 n - 8701879959316056467185326432774563193800076283883574984360\right) a{\left(n + 64 \right)}}{18900582400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1166676767278324800481897803529192720388631558 n^{7} + 328276870158826730137723308582788628363203744945 n^{6} + 39580050476160263020818101307515916095722491911841 n^{5} + 2650703330325515637719433047368638274543577868305735 n^{4} + 106491858254312056081244905279480172214347859721858737 n^{3} + 2566493224934013814639322329830478127174610256683777020 n^{2} + 34356297603991407054394418081702958612819956371905792924 n + 197064577048873589456607241170825903309293767801957484640\right) a{\left(n + 41 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(3453841767429870540244439723640057099276182671 n^{7} + 1471216248161513195655143027871614472233523707417 n^{6} + 268167940763764383937906015101997916594186962886980 n^{5} + 27111162018478508226303938304930578184572667738243905 n^{4} + 1641603082403879930207871065838459275220110036825800339 n^{3} + 59525572788380614629786248131448943759863643801030753518 n^{2} + 1196626245101900601803835652298799333879321180755102742390 n + 10285990634158107293939465523128818274240419940255313904980\right) a{\left(n + 63 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(3714882888143949508227176091721861463565143726 n^{7} + 1754611419021324946047958216683343447552380041028 n^{6} + 355037657512508851845241468848710635787561978418755 n^{5} + 39896485882435844653312451879375214679625172138127635 n^{4} + 2688994751667937590414043745299264288404662914102113029 n^{3} + 108703788712562645912629638562089623975038390270179635337 n^{2} + 2440502027254070458977908619066763032448428392111705464050 n + 23474321170224832396829859105861865692949103634316118203800\right) a{\left(n + 67 \right)}}{9450291200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(4428059261972844287405022345538792217539074324 n^{7} + 2081918136216274819808958043055655571349372086838 n^{6} + 419239309473598671232509435298156973819097484137162 n^{5} + 46873240617234160591248922158319227552102705176938985 n^{4} + 3142590061442629758970643133295699579579509218192325816 n^{3} + 126345815520695223922330485772551225757576800688068233597 n^{2} + 2820528666308093640201344419503029627626814247830400861198 n + 26971287389352343980738801531012137102788646432487780502920\right) a{\left(n + 66 \right)}}{9450291200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(5954167781635451095687746163961136510171067957 n^{7} + 1716049100477261667886349376787642659288742952133 n^{6} + 211926444723814057759942172556100644688268511643339 n^{5} + 14537504089207253241054795674058854545532011133719815 n^{4} + 598226494687525462775964338152986501198696236748596968 n^{3} + 14767620657811629771124427218164950902151718162703056012 n^{2} + 202487700397126965342280619254346530640907311541846944976 n + 1189661828320865235963051695349648496039768117322456544480\right) a{\left(n + 42 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(6696096962226986654955767357545632550132014514 n^{7} + 3176781694284024797455855574990472456437097821860 n^{6} + 644621256029313466210231273696782571089967796167189 n^{5} + 72535208552508039383493337835728014143416072071860020 n^{4} + 4888846837319126803779536600878294082031643273334107561 n^{3} + 197393429136069703996575404319430327757434627770281845060 n^{2} + 4421331851839401305827759742462673625432254247505570784996 n + 42384529993221155076770855927767170895773954324383307029760\right) a{\left(n + 65 \right)}}{18900582400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(7477453940593778248729212766249906257513380123 n^{7} + 2310745578073477126639840078474753083021790699023 n^{6} + 305990915314844854251251291575941676143751160762210 n^{5} + 22507426334860969055507016300498778746042022795719210 n^{4} + 993176290788788613236394164217913903193460153156148577 n^{3} + 26291086338829006146685190902274794609790590126442643207 n^{2} + 386586835654943958032917399096413408585143591344588106730 n + 2435768447597256875187620494977172950016049041824785765640\right) a{\left(n + 45 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(13927950753948104797485259709369276083010107587 n^{7} + 4110357702253543302429372049364803672437673393693 n^{6} + 519781701285665509183012647016180332570546512093655 n^{5} + 36510172166825219586392456659464218968838371703115295 n^{4} + 1538438883706393883199796066249411166300256272321015598 n^{3} + 38888231528849214548328395486975595993297403599207537652 n^{2} + 546011739783453278809896527743021305946153805591086958280 n + 3284923464794196170877823401449347952177776627478671503840\right) a{\left(n + 43 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(15011652772226086634542142730757033663191004347 n^{7} + 4534468599282737104755143504123155432680245912156 n^{6} + 586917391351422921047180927361636969386710183956786 n^{5} + 42197133052030006927591468826699876995067058618495740 n^{4} + 1819979083523336859575028220125976971826234392805682223 n^{3} + 47089664984153450852544285750541858923815076653128828664 n^{2} + 676760482045553101076291377357192432364286124472214894324 n + 4167622719360294398157749671747758927546266029812166024800\right) a{\left(n + 44 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(37058137659285016608985369473661090774226848452 n^{7} + 12222071545317157624425200890037927608045679247791 n^{6} + 1727389134903374785475490288880227529852772720647647 n^{5} + 135619893786729213836725607262127395076263198354445205 n^{4} + 6388040340528420657564931642053397796480075540759885433 n^{3} + 180518758472226924270903567895377277623015401128093115444 n^{2} + 2833760170324407164517654494863401849001599427880396497788 n + 19062725503885162295875155614247901706282069344959381723120\right) a{\left(n + 48 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(55154673054395802786342209741080472056490828639 n^{7} + 17428381639844556128298664334864299913918878167329 n^{6} + 2359917762152893307613877368970885573104134510332715 n^{5} + 177502656811030472804132360542033348606287581062435295 n^{4} + 8009466249950370732027870571848721377502881979492213166 n^{3} + 216816218715298893422487007807500188238815133732942120296 n^{2} + 3260200924179095117285593846741947308314380731433448579920 n + 21006598592097832825683863030131633793846600455180940364960\right) a{\left(n + 46 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(59824763294903452336105394608430721707393118520 n^{7} + 25564542393638882530189505001784665111641985118838 n^{6} + 4679344434566049124234114136751657146773008189617419 n^{5} + 475576025826807950838709862821416762985165130401784420 n^{4} + 28984099743481566682956629404452646065433081742601626665 n^{3} + 1059247101090635805421405327083820613310848871783580378682 n^{2} + 21493181692677799886229618431598035955480529353418660283136 n + 186791579274330004238981599688276055688955672015201275116960\right) a{\left(n + 62 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(76708914427716330269670560874037602618673753725 n^{7} + 31646489542150350488676527293103917415678033034423 n^{6} + 5593417439715525655821702719449869246059086369619634 n^{5} + 549044323666642523446856634600109763724200116364444685 n^{4} + 32325248425647867763657518101611395480862214749825225765 n^{3} + 1141517363200923995623166833175822612534232876446369079732 n^{2} + 22387589939344968591229881945307512908834254509882278865236 n + 188110765799515248080050476196646186980623084710806331344560\right) a{\left(n + 59 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(86800085565472332716983829698688680985347381945 n^{7} + 34473608492798650861600972684740535016895905858932 n^{6} + 5854394603717750076996951836931249203721222816955855 n^{5} + 551179230235950628220407601525450662945610709968241130 n^{4} + 31075291872541953891735805003381149003025301014262163820 n^{3} + 1049330861418116938248723075585321186794932466001574003858 n^{2} + 19652447838990000651877510180021349737276475505299705655420 n + 157497286978581370914152153440228870808169529699625197452480\right) a{\left(n + 55 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(90229129864920906931405913874061051359809798569 n^{7} + 38210484082529279482029857140003417152474754251564 n^{6} + 6932363347469263216951755738517742578443817060996423 n^{5} + 698467699056229535913955993609349554917240998859762015 n^{4} + 42208517416321562212212322169763396472195758336730059166 n^{3} + 1529823156640239593638206951548900681677970507630123800101 n^{2} + 30792460326177124809909344615591088287823383532457113961602 n + 265523848439713435687683490290828441445905729315243501422760\right) a{\left(n + 61 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(94106042186013230503606831514649522929574181061 n^{7} + 30389539176680431557660601378275109479442805677969 n^{6} + 4205373249656559981664655178497836163024987766350975 n^{5} + 323267622170930471277657174160869156103451036003051875 n^{4} + 14908019050423607862843383277537343751318024153076469844 n^{3} + 412455206921895594986402051915463259642966266708045876436 n^{2} + 6338814231911639100498355378986503254139392770753176743440 n + 41745372451273107079508296993238866664813309407277589960480\right) a{\left(n + 47 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(110458115342262201819604379590348543021629445960 n^{7} + 46200866225437716080263663574259211826488132258571 n^{6} + 8279061211020792926085024973825054856379518063300779 n^{5} + 823940151991081902064744264389093383504634300991060475 n^{4} + 49183371052569735508108130916556972907474029523605027525 n^{3} + 1760960168888983440973513180752047189939352057560200781114 n^{2} + 35015962403055118182313720752950694164551148898168528114576 n + 298307326572209753109421858343488479526200053452776899592600\right) a{\left(n + 60 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(112488263392409967905322714840234975134534606347 n^{7} + 39842850489277961893499722220945290762913106799671 n^{6} + 6043411309183601899968951013083744408967040578430623 n^{5} + 508854114494914701190942737855622525746392460892720245 n^{4} + 25685809734313469698671039661245523477713383025023600998 n^{3} + 777260913989489448975725999511212623476090819237114238524 n^{2} + 13054913279697461302196990712246747206738279971335306305112 n + 93884331352485617804957374852652072420929363679698886969760\right) a{\left(n + 53 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(158886602222875615647184525255487293559993985722 n^{7} + 63747705661235168108302448997585385029745525073792 n^{6} + 10955512672470028665939236216006291080032556686549119 n^{5} + 1045450293347617366152740186936604846840298273527569195 n^{4} + 59828381566725597662057756589879518686950160892185761593 n^{3} + 2053292080915673485451964326284299799528406025597392483573 n^{2} + 39130560258975322109223959711323481688511572362256214947126 n + 319451240642740084576560116119126473209902143508268012148240\right) a{\left(n + 57 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(161048907491186078216592841817829348585987042277 n^{7} + 57015428266990292004210690580154341798418417225181 n^{6} + 8650032026783487613524541697260041718516200913708345 n^{5} + 729020629101262988680701700269517129109719144450720035 n^{4} + 36862464371360945287269690582312677068350342295519032178 n^{3} + 1118287347167007379691815023959927402895856871764336662384 n^{2} + 18846269423348553705628883380423371360822388151277045730080 n + 136112618472167087809527471646603712872196819960977244935680\right) a{\left(n + 52 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(164129410123961967380727034627086371637630506459 n^{7} + 57308218847271733597133747481100134654487820645906 n^{6} + 8575514470005892838246268966086226023940551652034202 n^{5} + 712888349418748323201525274377863339184548214075448010 n^{4} + 35557049474813717385557292272134832955351301580299447271 n^{3} + 1064079005895655986770455006773378535404494938990684364324 n^{2} + 17690633155580312454564843315459551690140928270020708666548 n + 126046597571621618729309910456254347557721049944589226124080\right) a{\left(n + 51 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(199660675038076155200048580521652545095814607535 n^{7} + 79219202563081279246118193373069300895216725757125 n^{6} + 13459136785215457866567996967967454898712369493219184 n^{5} + 1269329617365917535141669885496287880949720230735993705 n^{4} + 71769810054866408606851874652055299658280483314662819985 n^{3} + 2432954748685929093015027724459384960580374698133276028770 n^{2} + 45786862094599014773413876846601537379586881118225908576576 n + 369037533235734412829859802530412163735253710014793679439920\right) a{\left(n + 56 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(206799660655640225013429468179137105576200729661 n^{7} + 84114428694575641283097673163571845682284366699050 n^{6} + 14656764488161789648046657947101073028279888122968997 n^{5} + 1418276533250466428506237482847167370938135810118990870 n^{4} + 82312616418781348817182363351274601478285720150222918234 n^{3} + 2865220596474863329189073819837007060221192518131787610380 n^{2} + 55387963066592448389578771221003513080356961270425178166528 n + 458708891477914765084612579765430012123041824349182977531520\right) a{\left(n + 58 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(214397462582502645158753244355946100849599634205 n^{7} + 72160016801962828998998755206989065468054524478969 n^{6} + 10408042955773663712003801207406380345601832527388159 n^{5} + 833952081274200500384786890210988064194378983387211275 n^{4} + 40090019077937500612848049133511176142322768862905091740 n^{3} + 1156257033633854545126927509815673701304047174532784593556 n^{2} + 18525567618641650237032111049626657942616098776090739002016 n + 127198852411390743973306957328676599110331801266746488785920\right) a{\left(n + 49 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(281595187866345549094538697249055792836373518841 n^{7} + 96617173147628910276458714563829887050082554579671 n^{6} + 14206593285967821803156464277953903313762593162452061 n^{5} + 1160477387274332617370503436204565036338821619151816365 n^{4} + 56874633209437210039116946950716926631933598571057674874 n^{3} + 1672384218347481330833596103630876896132564412138941762484 n^{2} + 27319052191489276372713262727538790473074593002116551974024 n + 191250856375632357460969885879216756387603348072558896855840\right) a{\left(n + 50 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)}, \quad n \geq 114\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 108\)
\(\displaystyle a(6) = 512\)
\(\displaystyle a(7) = 2496\)
\(\displaystyle a(8) = 12382\)
\(\displaystyle a(9) = 62168\)
\(\displaystyle a(10) = 314934\)
\(\displaystyle a(11) = 1606572\)
\(\displaystyle a(12) = 8242198\)
\(\displaystyle a(13) = 42486590\)
\(\displaystyle a(14) = 219906314\)
\(\displaystyle a(15) = 1142305670\)
\(\displaystyle a(16) = 5952728554\)
\(\displaystyle a(17) = 31110248532\)
\(\displaystyle a(18) = 163017382982\)
\(\displaystyle a(19) = 856278856638\)
\(\displaystyle a(20) = 4507847650308\)
\(\displaystyle a(21) = 23780918456208\)
\(\displaystyle a(22) = 125699810227774\)
\(\displaystyle a(23) = 665633681038582\)
\(\displaystyle a(24) = 3530890580627812\)
\(\displaystyle a(25) = 18760299474128026\)
\(\displaystyle a(26) = 99830649520649556\)
\(\displaystyle a(27) = 532012700429583354\)
\(\displaystyle a(28) = 2839110073142390558\)
\(\displaystyle a(29) = 15171033738149132116\)
\(\displaystyle a(30) = 81169626757907654142\)
\(\displaystyle a(31) = 434802427240363209198\)
\(\displaystyle a(32) = 2331775287493225494206\)
\(\displaystyle a(33) = 12518594084100965203324\)
\(\displaystyle a(34) = 67278719914141869126678\)
\(\displaystyle a(35) = 361937516669295400361282\)
\(\displaystyle a(36) = 1948968269930130709791556\)
\(\displaystyle a(37) = 10504462452172836071858162\)
\(\displaystyle a(38) = 56666237806384217946649492\)
\(\displaystyle a(39) = 305943261859775912496646300\)
\(\displaystyle a(40) = 1653136407652662916581527996\)
\(\displaystyle a(41) = 8939513228544237945489689480\)
\(\displaystyle a(42) = 48377481953652978800571275258\)
\(\displaystyle a(43) = 261989785974132841948206202862\)
\(\displaystyle a(44) = 1419793929572571512825714024276\)
\(\displaystyle a(45) = 7699364219090799125639611473390\)
\(\displaystyle a(46) = 41779410753457759399953250455404\)
\(\displaystyle a(47) = 226849320916018280684211112586068\)
\(\displaystyle a(48) = 1232453978834042112255899648613720\)
\(\displaystyle a(49) = 6699660408802115768008375341921526\)
\(\displaystyle a(50) = 36439713781294494989205696435882596\)
\(\displaystyle a(51) = 198302809611690368448174843920989988\)
\(\displaystyle a(52) = 1079708619133359649686289111536135460\)
\(\displaystyle a(53) = 5881667617318336974719204774572637086\)
\(\displaystyle a(54) = 32055559852968981307825316359535271022\)
\(\displaystyle a(55) = 174786679945710056736777031696590696274\)
\(\displaystyle a(56) = 953473862425541469211548192715423245224\)
\(\displaystyle a(57) = 5203534683963308976585395122806026246552\)
\(\displaystyle a(58) = 28410004831301089002438838805497134855784\)
\(\displaystyle a(59) = 155174948290996402625506032406486349950126\)
\(\displaystyle a(60) = 847898497157319301088991787567493921369334\)
\(\displaystyle a(61) = 4634819446562959921465529763643908716155460\)
\(\displaystyle a(62) = 25344483439048920651617164536021813566620594\)
\(\displaystyle a(63) = 138640756509660316406784011503406776251102650\)
\(\displaystyle a(64) = 758666019800455898894649181755436185393776398\)
\(\displaystyle a(65) = 4152963953842347348773744745263238467792828452\)
\(\displaystyle a(66) = 22740984719754352405174804203399674031858147358\)
\(\displaystyle a(67) = 124566103637732311039126428263011950345375244694\)
\(\displaystyle a(68) = 682536844567246389589877312054852782088049392936\)
\(\displaystyle a(69) = 3740969611339586736385345225070491921446223747866\)
\(\displaystyle a(70) = 20510229589258180807480555108733770121061845427836\)
\(\displaystyle a(71) = 112481647149131036766375073433856979932047545901152\)
\(\displaystyle a(72) = 617041385702582885604335191818253237575097638651940\)
\(\displaystyle a(73) = 3385830436509172065458191011400105448102329071918506\)
\(\displaystyle a(74) = 18583663202334515544672305234027981498020035619123768\)
\(\displaystyle a(75) = 102025727105138124468280880189869297389744227730387236\)
\(\displaystyle a(76) = 560270135196768784092577296755045142330775356735626124\)
\(\displaystyle a(77) = 3077456382221083298039198629794055819861730385484727472\)
\(\displaystyle a(78) = 16907926573972718519314186446267070972396808436878051428\)
\(\displaystyle a(79) = 92915948623576826987216935566397134925942295714007124604\)
\(\displaystyle a(80) = 510727431138142145301602643837468379561293718337837455788\)
\(\displaystyle a(81) = 2807920061546951991952464529311359104242038110226226751776\)
\(\displaystyle a(82) = 15440972265344428680180342416642355567108078700101641811098\)
\(\displaystyle a(83) = 84929131864567548285395181232402532005994312366029941652994\)
\(\displaystyle a(84) = 467227860918016936492791941216589308494964424418547512178464\)
\(\displaystyle a(85) = 2570920949805897940902105089217690837665251132032656135619602\)
\(\displaystyle a(86) = 14149290610888287040900652080498457617299440447712383474611292\)
\(\displaystyle a(87) = 77886939008259661862346071066211196539632607397853761150654560\)
\(\displaystyle a(88) = 428821715110557048013544061444523326130773577902442676339003008\)
\(\displaystyle a(89) = 2361398399391291700323498805052717197863278009945787205314239406\)
\(\displaystyle a(90) = 13005899011759990452273248338443413893878679738372497181742637040\)
\(\displaystyle a(91) = 71645417882123683522124971960378536900102920528647246724726223616\)
\(\displaystyle a(92) = 394740564222477252310548879857294601655255025513043592076831585120\)
\(\displaystyle a(93) = 2175248140357780664907542886270198312202255039288358577221255704708\)
\(\displaystyle a(94) = 11988863925493528852371774943538237204721129568305920621414187612480\)
\(\displaystyle a(95) = 66087290194149736941527483726939211973475257515478434339749376930932\)
\(\displaystyle a(96) = 364356989304500435046570857865441677323840632582573169052109004702012\)
\(\displaystyle a(97) = 2009111837333771928158576309555751927989040762151599957923889517931150\)
\(\displaystyle a(98) = 11080200273229253366944253129217662294367972522989335070250198437050340\)
\(\displaystyle a(99) = 61116191234042631986998809283994835597867319721561667523421028543310064\)
\(\displaystyle a(100) = 337154411357607412625021649796766575258021599518953868308507271144721292\)
\(\displaystyle a(101) = 1860218951087313366781077854415765211701321976213816879646885945608683264\)
\(\displaystyle a(102) = 10265041970821065769868218401389042232839383098858038817134197432241019740\)
\(\displaystyle a(103) = 56652316094623213313456643071132920456910950848357494884546237976178933416\)
\(\displaystyle a(104) = 312704223198846767941584365598947113000880422669880443980658510164132299952\)
\(\displaystyle a(105) = 1726266543089994010734078893145819920789384172293722265098864566027807532174\)
\(\displaystyle a(106) = 9531009760288515817023558330259465518700402650587187625159518387117759895438\)
\(\displaystyle a(107) = 52629092613852267872403663382643236299437755256519467357020796198959091685522\)
\(\displaystyle a(108) = 290648268196636744601422255663081110617493149263079806844620949454103506887484\)
\(\displaystyle a(109) = 1605326945427730818743527030711689592620627373124596928035046788459915737200658\)
\(\displaystyle a(110) = 8867724366727647689040590075641227098188210211493282784069892798862207654637064\)
\(\displaystyle a(111) = 48990612765586445454174804384466545623109784436014930067562111820312068798938868\)
\(\displaystyle a(112) = 270685280080698671470384487298030578327135450677049815877679879780155768207609708\)
\(\displaystyle a(113) = 1495776131990083686063644380144809286857035651928871414951768078122746697743485412\)
\(\displaystyle a{\left(n + 114 \right)} = - \frac{2 n \left(n - 1\right) \left(n + 1\right) \left(2 n - 3\right) \left(2 n - 1\right) \left(2 n + 1\right) \left(2 n + 3\right) a{\left(n \right)}}{18025 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{n \left(n + 1\right) \left(2 n - 1\right) \left(2 n + 1\right) \left(2 n + 3\right) \left(1342 n^{2} + 7579 n + 10546\right) a{\left(n + 1 \right)}}{36050 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(n + 1\right) \left(2 n + 1\right) \left(2 n + 3\right) \left(542944 n^{4} + 6923824 n^{3} + 31722071 n^{2} + 62042543 n + 43895040\right) a{\left(n + 2 \right)}}{72100 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(991682 n^{3} + 331699297 n^{2} + 36976209505 n + 1373744326466\right) a{\left(n + 113 \right)}}{2575 \left(n + 113\right) \left(n + 115\right) \left(2 n + 227\right)} - \frac{\left(697127332 n^{5} + 384886948984 n^{4} + 84993768143363 n^{3} + 9383910176288672 n^{2} + 517992512179247721 n + 11436575801983768728\right) a{\left(n + 112 \right)}}{10300 \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{3 \left(177455295588 n^{6} + 116464729763796 n^{5} + 31847171928163447 n^{4} + 4644386058140216245 n^{3} + 380969821120207946677 n^{2} + 16666096343132008203559 n + 303772401984444018485328\right) a{\left(n + 111 \right)}}{144200 \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2 n + 3\right) \left(195269104 n^{6} + 4287981912 n^{5} + 37951520566 n^{4} + 173723726451 n^{3} + 434662943887 n^{2} + 564503845914 n + 297640212240\right) a{\left(n + 3 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(8032410462 n^{7} + 247885617784 n^{6} + 3196554772278 n^{5} + 22375505606860 n^{4} + 91975250566878 n^{3} + 222298395336346 n^{2} + 292802159401557 n + 162257725797615\right) a{\left(n + 4 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(435421321516 n^{7} + 16018918063932 n^{6} + 247793031584728 n^{5} + 2093806210031340 n^{4} + 10456174092389179 n^{3} + 30905323939489608 n^{2} + 50120852955635967 n + 34439426850070620\right) a{\left(n + 5 \right)}}{2307200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2925300507296 n^{7} + 2221937436414372 n^{6} + 723275872372315946 n^{5} + 130795026630860187225 n^{4} + 14191142115451959292004 n^{3} + 923809326360072649611303 n^{2} + 33408922019828983475668734 n + 517789737339014658723976080\right) a{\left(n + 110 \right)}}{20600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(59282492152448 n^{7} + 2903270994200192 n^{6} + 59374366403858408 n^{5} + 659889134739356480 n^{4} + 4317011358002885297 n^{3} + 16660585026347575838 n^{2} + 35181432591196203237 n + 31401000463297288320\right) a{\left(n + 6 \right)}}{18457600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1190381941583124 n^{7} + 896189436448782896 n^{6} + 289151042499851668983 n^{5} + 51828119104221363776285 n^{4} + 5573726380144335038271051 n^{3} + 359637826598942553619196099 n^{2} + 12891423099846164009041198962 n + 198037697908073036628105991080\right) a{\left(n + 109 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(6498995707009408 n^{7} + 359162042293136320 n^{6} + 8320383294379772728 n^{5} + 105146959463301029680 n^{4} + 785031415490404908427 n^{3} + 3469902648239431139365 n^{2} + 8420839606440888909162 n + 8666408546154801454320\right) a{\left(n + 7 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(27280394905717700 n^{7} + 20356788814589871490 n^{6} + 6509985968697820736351 n^{5} + 1156557666238573894692775 n^{4} + 123280605446538060772269515 n^{3} + 7884287771053232870671088455 n^{2} + 280121650244039181603096159594 n + 4265236512448618083090200073720\right) a{\left(n + 108 \right)}}{288400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(253397876862929688 n^{7} + 187415001319632187822 n^{6} + 59404408309205398345410 n^{5} + 10460446951349442861128665 n^{4} + 1105154058475349650685300292 n^{3} + 70054564130526758802142855753 n^{2} + 2466989715182410292925183560370 n + 37231563051594000480105546894720\right) a{\left(n + 107 \right)}}{144200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(636002244963595056 n^{7} + 40123168888278562688 n^{6} + 1058790065291032757928 n^{5} + 15229709478794029016000 n^{4} + 129427563487412703438639 n^{3} + 651528192789211619014952 n^{2} + 1802251444601875994705817 n + 2116409365819816443147240\right) a{\left(n + 8 \right)}}{590643200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(15546719011007535014 n^{7} + 11396974593856921198626 n^{6} + 3580586921723275088127713 n^{5} + 624938053927920369819106785 n^{4} + 65442759333090679957772926151 n^{3} + 4111763574808026957297818294829 n^{2} + 143520133406027976188570800323042 n + 2146898057950705551485178512849760\right) a{\left(n + 106 \right)}}{576800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(20955653353274850736 n^{7} + 1497415255794134100592 n^{6} + 44622669446668098622312 n^{5} + 723910869321102650813920 n^{4} + 6936474641789238894840079 n^{3} + 39380610444412048975728733 n^{2} + 122933626469991744906066798 n + 163050404171482716474181680\right) a{\left(n + 9 \right)}}{2362572800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(65294688831444327280 n^{7} + 5122219280980344884432 n^{6} + 168208128747977808688597 n^{5} + 3016904785493450822857040 n^{4} + 32051609335876056670812880 n^{3} + 202277937383767469121275588 n^{2} + 703557180000267113209576233 n + 1041879422494263781483765290\right) a{\left(n + 10 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(199170089872977793879 n^{7} + 144726008514730222584298 n^{6} + 45069611998282688417381809 n^{5} + 7797226016208727267152335905 n^{4} + 809355404721045698758495199506 n^{3} + 50405889421948416695491523422177 n^{2} + 1743983693638418918109991951695786 n + 25859398701621766085817418401886800\right) a{\left(n + 105 \right)}}{576800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{3 \left(300728112819339428936 n^{7} + 21815953237878204301456 n^{6} + 674446565113028803632677 n^{5} + 11547960350526924287141010 n^{4} + 118530040529736178316808499 n^{3} + 730685897225890480172975894 n^{2} + 2508705755348250575898753568 n + 3704892972899839000896030240\right) a{\left(n + 11 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(4286553190058272378384 n^{7} + 3087814466885815922336648 n^{6} + 953256980397374528626480618 n^{5} + 163489139159321734159821577745 n^{4} + 16823320232811369739293836261236 n^{3} + 1038672008967164584342539690834647 n^{2} + 35625856943592528973646518083633762 n + 523682577665335518432659280252029520\right) a{\left(n + 104 \right)}}{1153600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(15392142479152734715429 n^{7} + 1977224230264209398940636 n^{6} + 94559115320256301376438140 n^{5} + 2333851939503961196959641030 n^{4} + 33025368611924255988690213301 n^{3} + 271874123934727450637511094854 n^{2} + 1215973890390755495585256378090 n + 2291798702007390643310569523400\right) a{\left(n + 12 \right)}}{9450291200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(77434454999216988557582 n^{7} + 55309004238282785245738672 n^{6} + 16930674892245284707608863015 n^{5} + 2879213287909309290976687103005 n^{4} + 293777355814746744232851262454093 n^{3} + 17984887624562192247166900961080963 n^{2} + 611671625309597672402602954410152910 n + 8915503493250593147527621577420937840\right) a{\left(n + 103 \right)}}{2307200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(581172923720863969886610 n^{7} + 411799418381361355077307540 n^{6} + 125049902411821576494403086366 n^{5} + 21096118527177237089708020144825 n^{4} + 2135340329894851235489998372517670 n^{3} + 129681197878839745438768779480524215 n^{2} + 4375307218559986126568023057335233094 n + 63264118353669816932603419293131413200\right) a{\left(n + 102 \right)}}{2307200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(1447612012691716065576785 n^{7} + 173648243405428343224164093 n^{6} + 8330228711990739993599595071 n^{5} + 212661194946145650597172287735 n^{4} + 3163193977269251883457359489350 n^{3} + 27634968904582247210903108518422 n^{2} + 131973030082064959576928865156924 n + 266684624991595288363274912421360\right) a{\left(n + 13 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(7045381350703186539102808 n^{7} + 4957463716274363602400791608 n^{6} + 1494957844626068845054956314587 n^{5} + 250447692180218410557381563866095 n^{4} + 25173732024141080807973816090151807 n^{3} + 1518171031928348295192713871709088337 n^{2} + 50864245590810070216412751636538089438 n + 730329910973407101019833708563790432360\right) a{\left(n + 101 \right)}}{4614400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(7143531608156706055904355 n^{7} + 899791707846186223397681926 n^{6} + 45773637160252200819504411450 n^{5} + 1245292908985396496590917431110 n^{4} + 19794449616986806524880568697645 n^{3} + 185117703094420103552177623736284 n^{2} + 947358917470345909906155472465650 n + 2052923501089416818498455327136580\right) a{\left(n + 14 \right)}}{18900582400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(10537212667138199595291190 n^{7} + 7504947002625977369153851760 n^{6} + 2288337190132716471977518183849 n^{5} + 387236815663577542271994977194205 n^{4} + 39279686753479950900152579840813635 n^{3} + 2388463160416117640802559360605913835 n^{2} + 80617028547404017572873193617072174126 n + 1165222603116549864612214765075675983960\right) a{\left(n + 99 \right)}}{659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(12382719673821028957825874 n^{7} + 1669933661206858460079478298 n^{6} + 90763595036893137260165556899 n^{5} + 2634987092006704013656891920830 n^{4} + 44657948099432675455619084129261 n^{3} + 445011457647932506140095746319462 n^{2} + 2425324442060035989675263492576736 n + 5594362162372414592032155012956160\right) a{\left(n + 15 \right)}}{5400166400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(31798589693426713004412398 n^{7} + 22289003376625234609664378620 n^{6} + 6695187704865319349056878664097 n^{5} + 1117194960915153220134489035610085 n^{4} + 111844217118297138840588441237229847 n^{3} + 6717643299156299155949646203539939855 n^{2} + 224138212254628786080738948369895813698 n + 3204841902052122914387935369531473299880\right) a{\left(n + 100 \right)}}{4614400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(705557274383542691876654024 n^{7} + 455280088758101734025243701776 n^{6} + 125485057032889202355768854690135 n^{5} + 19142222784484647519038984347730265 n^{4} + 1744543519948465462971505508938255331 n^{3} + 94927138242919411446128564311900025439 n^{2} + 2853389090638634623006839106416231160710 n + 36514977138630547226600210440302650639040\right) a{\left(n + 98 \right)}}{9228800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(706401683276030026109111143 n^{7} + 97254204503505364524546362144 n^{6} + 5435833485457564029258206702494 n^{5} + 162786196428915023736621207614270 n^{4} + 2849119895773506566366823078836887 n^{3} + 29320671724323149657902954496742386 n^{2} + 164922651163935213924251817869536836 n + 392162352618552718266752158799017200\right) a{\left(n + 16 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(11623386790740663821156229953 n^{7} + 7694074894084202809792173928620 n^{6} + 2181699354803648723093857859522876 n^{5} + 343512934312453434265725770820148530 n^{4} + 32435061927019260223377505668791271047 n^{3} + 1836534528466442957496118542261334416870 n^{2} + 57737894380496013891565681549379016795144 n + 777469981898666460032183506839870819312000\right) a{\left(n + 97 \right)}}{9228800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(13881406573901169252847408391 n^{7} + 1388787877101232583909966058691 n^{6} + 55459479353575553454423733002593 n^{5} + 1083532834425988744886150378811985 n^{4} + 9284005603206469447856831701895684 n^{3} - 6621441404887307760489433646921456 n^{2} - 655099475079516726963510319654852248 n - 3189875915969372578666609888052676480\right) a{\left(n + 17 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(81945378237812810755389687064 n^{7} + 6788512227000276829205876134457 n^{6} + 176024060234513147996198652884203 n^{5} - 417582434878146339952079893267045 n^{4} - 109647255241506608324052130458339539 n^{3} - 2281242009998239529338939274956048372 n^{2} - 20226340883928892205274795433249992888 n - 68692745298889588529738240169480312840\right) a{\left(n + 18 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(148389353110896973162330405549 n^{7} + 97314051231983128557224037251882 n^{6} + 27346951786518295320047763947115949 n^{5} + 4268795833084645234150925814042508400 n^{4} + 399748522415285675421501682281285678106 n^{3} + 22456987077813952458019890832996332731078 n^{2} + 700766832428666740187954093648210255420556 n + 9370153476073855545246512043566862031884000\right) a{\left(n + 95 \right)}}{2636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(179250562662907310864520013308 n^{7} + 118320327509035368325935934956068 n^{6} + 33464090842082726496814048019162559 n^{5} + 5256789126358568889318804466378817210 n^{4} + 495341010236222503680517670665774912197 n^{3} + 27997976564045999475012536851749008464562 n^{2} + 878941824842274757054811434283668874730816 n + 11822151606737037011230319251701531182037360\right) a{\left(n + 96 \right)}}{18457600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(930991143225185452135881825741 n^{7} + 88361790170701822618784967755267 n^{6} + 3079468895143650028549752420084558 n^{5} + 37536517180692708183288545533867085 n^{4} - 388991898557249645737687276451367081 n^{3} - 16577242033227521089422481813441087642 n^{2} - 179242230227352192766505957092291233768 n - 680911601311455261568377649367885729280\right) a{\left(n + 19 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(5118262831657695512939470635491 n^{7} + 3329240485926061575039005195898838 n^{6} + 928022588814875018552351946385058516 n^{5} + 143703017987502016883967633125541211045 n^{4} + 13350262399282508729580046543950916400219 n^{3} + 744096236514604104570299392571896953295297 n^{2} + 23038746251936504998117075769063995788871674 n + 305684541960697911883003636233715968747343320\right) a{\left(n + 94 \right)}}{18457600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(14226538980488013724985225957679 n^{7} + 1502687551613096449399209603444728 n^{6} + 62301737384530303747750494659330286 n^{5} + 1195883310619095045829613740235804150 n^{4} + 7227754778548153994490543344699731011 n^{3} - 102746650246810990527357040873687291918 n^{2} - 1878182489446807391638328085042841336176 n - 8580754649054358877560189371013486951360\right) a{\left(n + 20 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(46930999688115237622863974776096 n^{7} + 30221993510078300250120579175785976 n^{6} + 8340869005107293861750465831512351399 n^{5} + 1278874731499473062562281800632485632030 n^{4} + 117651184420436897400204743322680763194869 n^{3} + 6494047990747495347824834146505862519067894 n^{2} + 199141191765353900454276092617136963396396016 n + 2617146944316621055001152968002888295616498080\right) a{\left(n + 93 \right)}}{36915200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(164636284945955547226264254034320 n^{7} + 10996338360395130131307570875734805 n^{6} - 113802610529113226334008945414412429 n^{5} - 31166318425088491218639446569989734605 n^{4} - 1199665700038298553371752383767294921535 n^{3} - 21610462914474335005545890128962442446160 n^{2} - 193725280697380348896891706370800202522076 n - 698234166364808129506919715447052395012000\right) a{\left(n + 22 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(217250108322170297033220155138521 n^{7} + 138202079548022954587310351974114837 n^{6} + 37681244634438719672670664326280960360 n^{5} + 5708163516613135981666240806174769500700 n^{4} + 518862097932548897626970216806981872423289 n^{3} + 28300359755186922803925785691534825208265023 n^{2} + 857615741658357706022029393658608341901888830 n + 11139099218394674164240206847603196370076126920\right) a{\left(n + 92 \right)}}{36915200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(268091721835041293760227088406031 n^{7} + 29716219647426177373179184172009931 n^{6} + 1304243329018267883581115608285507841 n^{5} + 27211112086794315770144928125459369505 n^{4} + 213287973761203306481279104436016514544 n^{3} - 1473038562723903620069423914310453415276 n^{2} - 37059893954641951333567579858607440972416 n - 184558606794442973810146991520401564385600\right) a{\left(n + 21 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1790076189080935471890839403774178 n^{7} + 280029758990644851672745038656718581 n^{6} + 18585784464150579470843058027552404485 n^{5} + 677910272212734342367262972780335543805 n^{4} + 14658281002856664473265235578075698577577 n^{3} + 187562714628393496385933793451526719941374 n^{2} + 1311643737788190293654856590567399403957480 n + 3852272839998156602135375840501913387919200\right) a{\left(n + 23 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2095007184414965569264744701729724 n^{7} + 1315069996294958580751367520654745640 n^{6} + 353815305985454609476987252001684577967 n^{5} + 52890075612596939765823525353604848782355 n^{4} + 4744238155129072961535310767784629888562171 n^{3} + 255361037231121735930406479547413072309617285 n^{2} + 7636880824874246334558249032398380512150437698 n + 97892057404075434418065630237797632276065110760\right) a{\left(n + 91 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(10079041113390293348632464647045375 n^{7} + 6247576473157088086057755206829714111 n^{6} + 1659791506791013633311503675726362343996 n^{5} + 244991421556924609007707320707390935244250 n^{4} + 21698458851289035326365041790568802148174415 n^{3} + 1153158828687847388907412687252518091645327839 n^{2} + 34049396613702210826327630240768691922482875734 n + 430910509031565785496056421761922156513661341480\right) a{\left(n + 90 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(40848439746428368535590861834287351 n^{7} + 6302459378831153241367993820481017818 n^{6} + 413369437851950456911568455922602397292 n^{5} + 14915188372257130331222736083180076071980 n^{4} + 319017257057909509459338460299135637563069 n^{3} + 4031949410663739121691438702756568828983722 n^{2} + 27752588308770002728538724148324182152234448 n + 79689148521780611700661021190143063997958720\right) a{\left(n + 24 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(45033836252444237548540060619659676 n^{7} + 27613061362400871672511560168975984387 n^{6} + 7256353773562483024146734716721714469440 n^{5} + 1059390447738205652956516809190884113192385 n^{4} + 92800927873338983718034274426658980988062324 n^{3} + 4877625693622459740583463061467897344809975708 n^{2} + 142430175160990666104741719607333659833010843520 n + 1782501671185645142264800282151069460661918485120\right) a{\left(n + 89 \right)}}{73830400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(351525655183451471477579045578503788 n^{7} + 213683503762848461569509049912729184810 n^{6} + 55666269411529814835306557622131236765457 n^{5} + 8056108251913975360300232870298237479245760 n^{4} + 699511608241706359393377365464388489038347347 n^{3} + 36441956312298223979306085190865771754721921670 n^{2} + 1054684347218829645916551904756578539556133709808 n + 13081387559325122066298148334815977475011496008960\right) a{\left(n + 88 \right)}}{147660800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1095280203343421461378438383748612519 n^{7} + 173811823291325312925614129116253031779 n^{6} + 11727489946070306492753863131527145802561 n^{5} + 435376251662329895952350579077620074514665 n^{4} + 9582603641586608678759056740262986979916176 n^{3} + 124643885798168252051622041384311067323243196 n^{2} + 883044173092497051832815623748380522617063824 n + 2609810971106315683357155369236353377158851200\right) a{\left(n + 25 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(1129759908440396269698729468364231571 n^{7} + 683231454434232711456384803271739975920 n^{6} + 177058711727158588360443825542309044221758 n^{5} + 25488220138234948464450474165576509785098270 n^{4} + 2201197223983951318179968496139010445826249499 n^{3} + 114045028023525631684348167717978828932547837510 n^{2} + 3282227379043573197092740059924803908162158728352 n + 40479235842811791938971405833394839846639936530640\right) a{\left(n + 87 \right)}}{147660800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2668409199997381366067145274031251444 n^{7} + 437221737769582484432078402472939745437 n^{6} + 30458130144588051620114877822376033506385 n^{5} + 1167420049143946208370038427016160395122915 n^{4} + 26528360576634250024550459507065368267258271 n^{3} + 356271050958986929584410853620318591897040888 n^{2} + 2606285648134507551220014959403877851697755300 n + 7955677774148553387002783816971418235498428880\right) a{\left(n + 26 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(4605451486496995920907200134474504681 n^{7} + 771705878661999107666177638875731288545 n^{6} + 54880764674700078606745248200346654825053 n^{5} + 2142531275528891820290419551281608683529225 n^{4} + 49439762883523704699625486812089894849912594 n^{3} + 671373388016748461244547427274791144377213930 n^{2} + 4934823887184765705754482720230959264365373452 n + 14981903010273296390163768930963149391087966960\right) a{\left(n + 27 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(4969541312119296046626379778625700551 n^{7} + 3301999317805162981368935502661089289498 n^{6} + 927496760905896137664300117332146427893014 n^{5} + 143153945074886510430538710693818717552550865 n^{4} + 13138044724878938703948831305068452908991433929 n^{3} + 718023437924380348994032518611491969711332095377 n^{2} + 21662035751227219487193179385724418577272575628166 n + 278547078885198221259671976576692193776461192503720\right) a{\left(n + 85 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(5332244014221056365733675166912867730 n^{7} + 3239209004485285246759640294066275872686 n^{6} + 842799767965309713904140661631737748910301 n^{5} + 121753491188134807627522484227088346444572480 n^{4} + 10547362348502897013741729586454114832479198725 n^{3} + 547925062331306657060308782075212093907881948414 n^{2} + 15805141493006916609490087221475188252245617973424 n + 195289781041965335068138031749076387621104589103360\right) a{\left(n + 86 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(10948085483273793625075305800526819418 n^{7} + 5831723484043427111086608756585099663671 n^{6} + 1320163629729934481235468896365765753264271 n^{5} + 164348933583124815931438708646171542172807150 n^{4} + 12122628518221308180103695608539937066916076277 n^{3} + 528026644910002771567274662818937231753737494099 n^{2} + 12513424498979756312046561184622726636291969288554 n + 123515768754261637902749764707598440237285163516920\right) a{\left(n + 84 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(28319434963581509614132492217885441589 n^{7} + 4416991748550759661702159518504235990817 n^{6} + 282329286632363558350135244984857880895963 n^{5} + 9333794494728283691672297646533902311443795 n^{4} + 161932342255679805284477037374138657617501896 n^{3} + 1184238346630583504536086680308494342031537268 n^{2} - 2062336140508055075403704084563806618068667888 n - 55924753298427284937911934197827863858240029760\right) a{\left(n + 28 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(58578464363441498880373036794105961511 n^{7} + 12267926793184634786196963414489731378129 n^{6} + 1092182558257588251537000055548459144972807 n^{5} + 53616487006108562574244255743090379259255755 n^{4} + 1568206263981709679921615185030732693773260994 n^{3} + 27336248325973618540950893495133383076135127356 n^{2} + 262996916251038489490030560185129183430443695048 n + 1077327251113474135257834439948323322340100101280\right) a{\left(n + 29 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(247971745920584070707593388235609458196 n^{7} + 137222684542943559574964689044951592132949 n^{6} + 32490040989217177835314679711704433867666238 n^{5} + 4265990075652071223068583576813445030351258505 n^{4} + 335421401032836405516678447947389432230372684474 n^{3} + 15790139083846827598820537336568285699401509565546 n^{2} + 411996252438190719822288357842070950306295679166412 n + 4595221214383299883903131637729349290471794051018480\right) a{\left(n + 83 \right)}}{295321600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(976395238344689245131114413276465780602 n^{7} + 199078680137136949457034204830675519204463 n^{6} + 17346462896329030123131508944927957790021603 n^{5} + 837123413741815383611541573576345583237618245 n^{4} + 24158374190117353975081057677828996615197713183 n^{3} + 416780816142386786421408911696147509092219527652 n^{2} + 3978519197646078005209584372578368551771577812012 n + 16203433823538256142124480172668378710934228462480\right) a{\left(n + 30 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1051344692512353686634869286010928997718 n^{7} + 583996504186475555027289523937721006901796 n^{6} + 138970209144966613663683321833582355543379060 n^{5} + 18364494515232097079543637372041932208527435715 n^{4} + 1455461432958116957738792950031290602860639787052 n^{3} + 69180145287657106137362695536409965670975218234329 n^{2} + 1825962215495782581366902503634783474204309915783490 n + 20645303707976746533002998464845911878505137616572960\right) a{\left(n + 81 \right)}}{84377600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(2165020012264906350583571211384917867663 n^{7} + 1203140484562399910752052911404132583100441 n^{6} + 286333681154815667591915836661770834116238694 n^{5} + 37828445472622641057575766375283026614294304575 n^{4} + 2996132060876716120051361210143935553891544066627 n^{3} + 142259411588235116454787350159164614986780080848244 n^{2} + 3749164109710853682677161480815815313456056689938276 n + 42305290933274181892719731157050942311248403779458160\right) a{\left(n + 82 \right)}}{590643200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(11380666334180007698356726745567016541731 n^{7} + 2364531538672090147021873951483769333977319 n^{6} + 210005342612555766623944913348665654613263245 n^{5} + 10332644830981963312544395252363349320947956765 n^{4} + 304072363639263797605545811029590471780331174264 n^{3} + 5350168608781622107186512932296257986071096623236 n^{2} + 52091897578134134243654546715424823409206203973280 n + 216398191268732894028159959590080953726450951922240\right) a{\left(n + 31 \right)}}{2419274547200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(24140113671562213183641651398693646694724 n^{7} + 5133705493267148137823526286964151724757079 n^{6} + 466599301043828810349482467962433319939260931 n^{5} + 23488046455128386529916424801662980545616174045 n^{4} + 706973132744108079485651807955953128486764167621 n^{3} + 12718080483492730152841080073558339384198138936476 n^{2} + 126546451937849508721100328453007728450219755594004 n + 536914068627748317948046867715977297964453501631120\right) a{\left(n + 32 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(30279359085287115941690096812019342225926 n^{7} + 16825260452578743656368313391045789743440763 n^{6} + 4003429446452954856763549212318765469460836144 n^{5} + 528786313226990770153808810194190542738530224225 n^{4} + 41874177328608858476451596523232438638177550348414 n^{3} + 1988134631472510853535279389222080334143413983599272 n^{2} + 52404569456527731608823785559490631788627834353093576 n + 591596036374890217598637317093011370972813286979003920\right) a{\left(n + 78 \right)}}{168755200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(38027260942644223631229085981751385330667 n^{7} + 8242721922478640233889625989370165992576359 n^{6} + 762884565118144136650944061693129484913823837 n^{5} + 39061568835010506934872458280665371902396186385 n^{4} + 1194282490228846611101878526707399669735117130488 n^{3} + 21787694260459507718578006762528636599895330422736 n^{2} + 219401235378673316354941013945543511167965350858408 n + 939675375958144135915967755271165898190309121253120\right) a{\left(n + 33 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(41919195320389290741124306594637612568029 n^{7} + 23263654199554281896031907269095110295487813 n^{6} + 5531341620692969160085528331069718439657074812 n^{5} + 730423381133606005988885013339983519214129540405 n^{4} + 57854074586498476191097545500655404232592497194471 n^{3} + 2748577223125319222649826328987835866560625255848902 n^{2} + 72522438007520997205458102384695674190748259442944848 n + 819827408897516932440856562023195122566966127045963600\right) a{\left(n + 80 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(67622568734312037735920921688684269141341 n^{7} + 20400252149532509227241737786623787108260423 n^{6} + 2536058969160813443783030666708883625624813435 n^{5} + 170433422319304246404667962148081751844462852705 n^{4} + 6735515221154990123724152263698486423749909196544 n^{3} + 157266741067595733808216656907517891402145964138392 n^{2} + 2015217170132415436975969518464749069287354265384920 n + 10957682313507041896216996663950536001321392715608160\right) a{\left(n + 35 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(73191231794024487168400242045691266808113 n^{7} + 15735424179905142579360390087582343971850699 n^{6} + 1435689425210787346578266142474475535732439933 n^{5} + 71899358768547713016340231103313535494756734575 n^{4} + 2127762730687631508042472580473108258728344887782 n^{3} + 37038979091073401373890877023746937674717876981486 n^{2} + 348692747116537660218126849938157614432253322075092 n + 1353632141047005632462548144310739104859177470406720\right) a{\left(n + 34 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(102270377384180963371324630125164072920668 n^{7} + 56747540943907380653955210761821055052410753 n^{6} + 13488930837470331009799180774569154713417597402 n^{5} + 1780534906694166978990694557740157582021425445515 n^{4} + 140959486894349502925171232151582702849297319051482 n^{3} + 6692884337696488744201559033293519916159522504411852 n^{2} + 176476891312591145087246099801451549993736365500533128 n + 1993505515211420775591824619633286107160323965114823360\right) a{\left(n + 79 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(125938055884030367078634798709961663759534 n^{7} + 20805391786797173436129443476079730811726337 n^{6} - 5690434766731978255462503166515360631485100891 n^{5} - 2028769899356929890306612909742032393238285117165 n^{4} - 252465968755922746085734203900769259553760590985639 n^{3} - 15938820092065906322319039071311612562259793503620932 n^{2} - 514431290627337639228839876959576996884994063872824844 n - 6769527820709493002221122357062686548502538803120582800\right) a{\left(n + 75 \right)}}{2362572800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(209417765594653766494023387596276496534210 n^{7} + 53317596026562878340697173291032774047363067 n^{6} + 5814268185922546100517155972204342551350125739 n^{5} + 352045576674626977026445621224277555396408952345 n^{4} + 12782417028102629737353314916091630712439138722295 n^{3} + 278319806441469712068721308552615316928686864240868 n^{2} + 3364921615320371784850422679529127724145119345062996 n + 17426384913927445758071633767591219288321245237275520\right) a{\left(n + 36 \right)}}{86402662400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(353847365067230110669283827848340057285123 n^{7} + 197675198867424483592680551551514157438415382 n^{6} + 47243246867695242553212880514486499286183582084 n^{5} + 6262397990058167434267794004371678992079397372490 n^{4} + 497313188111030543365427873543774062271947040207017 n^{3} + 23662104297927797768190241039857160668600634039184348 n^{2} + 624637389777053622449389291917261937555243069033003476 n + 7058075420889055297170021077225864792595097924679241840\right) a{\left(n + 77 \right)}}{1181286400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(781505460202192114122612253211630926124851 n^{7} + 446806463633945002189347244977891787345306909 n^{6} + 108926726654840802791673535872248061272600361931 n^{5} + 14687706077321710911352950455430206737238379966895 n^{4} + 1183656321416703002593119178525920371003310974048554 n^{3} + 57034214523752248922782651902664513778489396794234516 n^{2} + 1522005028647686036565249916272118138044099768696990984 n + 17357846702428100372910647811069889351115202027713505120\right) a{\left(n + 76 \right)}}{2362572800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{3 \left(2148902468188141337833598834238974317714731 n^{7} + 1100714878024868154076905896281925273870453537 n^{6} + 241111122227162006122794324463309413615073128027 n^{5} + 29277463821050556819506284242458214193485026073495 n^{4} + 2128267143134524163532891549199259303831546125394354 n^{3} + 92612037245980825280903001647317478402617368332954368 n^{2} + 2233563436753877999406434092868215790274276442506948448 n + 23028775920467395978467127260506765776230718792989409440\right) a{\left(n + 74 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(4318989130042068701099344511676699803104576 n^{7} + 1109202920416419239085571008610478372049442981 n^{6} + 122066388046989955161837613428108174189630339025 n^{5} + 7461740799508183699337796856036749676738077801055 n^{4} + 273631109961413632602384830142907829907799356638269 n^{3} + 6019640699732507490123764445103452521060575912499434 n^{2} + 73558057017616470095427436522135544711406596874050280 n + 385157889488139999722063846102894762014118058599173440\right) a{\left(n + 37 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(5737868693959871311810883464330477992191307 n^{7} + 3016959336258922083757257484438864345989383773 n^{6} + 678135957576256080294292818152808293417129526241 n^{5} + 84485830690419395624742406426553945639575519079935 n^{4} + 6301877968683946669048055478505793613298831674900948 n^{3} + 281475670785999587401724649197091904475047519021898452 n^{2} + 6971565419308018451081421549395620681855362151228956224 n + 73872811759933083141086449328613687817589299077585550080\right) a{\left(n + 73 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(20787536219945076033464851149064438901883181 n^{7} + 8134241724918395592672537612953600290633382137 n^{6} + 1270878065868011616329224585875824552988046984465 n^{5} + 96496483820928846769307282764731525740223258836005 n^{4} + 3078099958755454514295671195775739398972921336543694 n^{3} - 27341161390590540343218825293359108859599515062842262 n^{2} - 4343677536859698252034317340366947228688152240511627860 n - 81004367434470849166020166100443052268641876832109425600\right) a{\left(n + 71 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(21070136465423176600016960795454195883274589 n^{7} + 11600636976033032511243306818378757437045670883 n^{6} + 2711838944687976124752702428034992548799833570017 n^{5} + 349456361785326665321593442427169122610800566986255 n^{4} + 26841741524057414737171003797667979467891679720746326 n^{3} + 1230050947589981568892695474926269531056739194412043422 n^{2} + 31162375265470392445734739510194761123573982101863454028 n + 336892730359126945096431524616080540738386035087927746640\right) a{\left(n + 72 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(61419299296677462810202211840556951100102378 n^{7} + 28931365420259788686417809572255818411109016622 n^{6} + 5831492439805426498881623280063375121618388823537 n^{5} + 651913216990511930883310920802859559915594128454035 n^{4} + 43648022463802413360180869562162026521011893144204127 n^{3} + 1749999687969921189244493156723014386063933727494231103 n^{2} + 38896533586399293367680095559816266166439245450255339038 n + 369651718396044769132969981090404201808089439059214552920\right) a{\left(n + 70 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(74163044312741413657944698411624817199550029 n^{7} + 19434732893088061379156374262917080683555479397 n^{6} + 2182375245387310666999425025208997376256861961787 n^{5} + 136126477387651853085652870990374593722882103393135 n^{4} + 5093778506976514029344402450593433459043222559204096 n^{3} + 114345723138837406180551190339708045593618114844171988 n^{2} + 1425793282454232680776104352110953505591175050435318048 n + 7618048949280484601696720592939534850395432251173355040\right) a{\left(n + 38 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(167113450309733670955776919460003689680337179 n^{7} + 79398631799596353875592669067923716601931888285 n^{6} + 16162184763759045208313201018355988932624871306347 n^{5} + 1827168166840362433393589871066083054033874273445030 n^{4} + 123900683957773742845791251174170282491026029638785256 n^{3} + 5039495646689786247870441788765209584186979769437129045 n^{2} + 113840350307073983954442059340375417394308212030168913738 n + 1101788186625641622810366373443892522872377410097316741240\right) a{\left(n + 68 \right)}}{675020800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(265389237884645066623452536431860440391861231 n^{7} + 71168918874078532823012192521544246159840679061 n^{6} + 8178056359041241789755600352820655832478016531639 n^{5} + 521993283482051690879906187856506899108953375142575 n^{4} + 19987415348365273508790134302611270846251218625671914 n^{3} + 459116880897370089354391692223990844256451733115363844 n^{2} + 5857859518725009496351943328358223129827943421966291096 n + 32025600085476685051523357541187601154225061516161314400\right) a{\left(n + 39 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(277043774406959394533829226657096044352582101 n^{7} + 76095302536633656389864382864777399943389743379 n^{6} + 8956025780703704514430642719319738681637923264489 n^{5} + 585495061680754325372665702398700661849976653823865 n^{4} + 22961662164453550053874900481777673560712363513425834 n^{3} + 540198685150999844999646200498880094524725796206268836 n^{2} + 7059076996983530654061085039308905665227048297190180776 n + 39525737012746223040413255462811036019317831344992668000\right) a{\left(n + 40 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(559223099825954440751928426863585273109346824 n^{7} + 266400348481710156022515434495818713231432040594 n^{6} + 54365038491284709327833594487594722918550430451991 n^{5} + 6160852522417202442239973444015714266176304427249115 n^{4} + 418714809537715333437234074310514268283683257435352751 n^{3} + 17066654322976964130860083845742343464484346448831064251 n^{2} + 386280819523757894157695939800675457563530075016899035154 n + 3745190079067611864931727168348578149053274471939425662680\right) a{\left(n + 69 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(590660867545720825233740455837310290249663644 n^{7} - 297199846994135665390696721384863047040178093705 n^{6} - 129401821734170766020219953387196673171011104204488 n^{5} - 18688516305797478856741900296527963705376116571559205 n^{4} - 1375109786486785603397362837733749271793138779198456004 n^{3} - 55952758147747337761149230329710606377481465675729439130 n^{2} - 1204257248246954102694805061496568846578744832551331602192 n - 10749331372306091182115246716824176540703478171340251212720\right) a{\left(n + 54 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(846129934556644935690942523474969458280442105 n^{7} + 197961205215975356191251535913922466112970525230 n^{6} + 3246063421121862589574366703348787271032330989731 n^{5} - 3360006862907653323170255869906957454266366352132935 n^{4} - 452083753718826601061517591868139162923431066031893670 n^{3} - 26454733266810280597780147809510138302216481405344769055 n^{2} - 758186675225259279867553018451963564342900486867295651606 n - 8701879959316056467185326432774563193800076283883574984360\right) a{\left(n + 64 \right)}}{18900582400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(1166676767278324800481897803529192720388631558 n^{7} + 328276870158826730137723308582788628363203744945 n^{6} + 39580050476160263020818101307515916095722491911841 n^{5} + 2650703330325515637719433047368638274543577868305735 n^{4} + 106491858254312056081244905279480172214347859721858737 n^{3} + 2566493224934013814639322329830478127174610256683777020 n^{2} + 34356297603991407054394418081702958612819956371905792924 n + 197064577048873589456607241170825903309293767801957484640\right) a{\left(n + 41 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(3453841767429870540244439723640057099276182671 n^{7} + 1471216248161513195655143027871614472233523707417 n^{6} + 268167940763764383937906015101997916594186962886980 n^{5} + 27111162018478508226303938304930578184572667738243905 n^{4} + 1641603082403879930207871065838459275220110036825800339 n^{3} + 59525572788380614629786248131448943759863643801030753518 n^{2} + 1196626245101900601803835652298799333879321180755102742390 n + 10285990634158107293939465523128818274240419940255313904980\right) a{\left(n + 63 \right)}}{4725145600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(3714882888143949508227176091721861463565143726 n^{7} + 1754611419021324946047958216683343447552380041028 n^{6} + 355037657512508851845241468848710635787561978418755 n^{5} + 39896485882435844653312451879375214679625172138127635 n^{4} + 2688994751667937590414043745299264288404662914102113029 n^{3} + 108703788712562645912629638562089623975038390270179635337 n^{2} + 2440502027254070458977908619066763032448428392111705464050 n + 23474321170224832396829859105861865692949103634316118203800\right) a{\left(n + 67 \right)}}{9450291200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(4428059261972844287405022345538792217539074324 n^{7} + 2081918136216274819808958043055655571349372086838 n^{6} + 419239309473598671232509435298156973819097484137162 n^{5} + 46873240617234160591248922158319227552102705176938985 n^{4} + 3142590061442629758970643133295699579579509218192325816 n^{3} + 126345815520695223922330485772551225757576800688068233597 n^{2} + 2820528666308093640201344419503029627626814247830400861198 n + 26971287389352343980738801531012137102788646432487780502920\right) a{\left(n + 66 \right)}}{9450291200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(5954167781635451095687746163961136510171067957 n^{7} + 1716049100477261667886349376787642659288742952133 n^{6} + 211926444723814057759942172556100644688268511643339 n^{5} + 14537504089207253241054795674058854545532011133719815 n^{4} + 598226494687525462775964338152986501198696236748596968 n^{3} + 14767620657811629771124427218164950902151718162703056012 n^{2} + 202487700397126965342280619254346530640907311541846944976 n + 1189661828320865235963051695349648496039768117322456544480\right) a{\left(n + 42 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(6696096962226986654955767357545632550132014514 n^{7} + 3176781694284024797455855574990472456437097821860 n^{6} + 644621256029313466210231273696782571089967796167189 n^{5} + 72535208552508039383493337835728014143416072071860020 n^{4} + 4888846837319126803779536600878294082031643273334107561 n^{3} + 197393429136069703996575404319430327757434627770281845060 n^{2} + 4421331851839401305827759742462673625432254247505570784996 n + 42384529993221155076770855927767170895773954324383307029760\right) a{\left(n + 65 \right)}}{18900582400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(7477453940593778248729212766249906257513380123 n^{7} + 2310745578073477126639840078474753083021790699023 n^{6} + 305990915314844854251251291575941676143751160762210 n^{5} + 22507426334860969055507016300498778746042022795719210 n^{4} + 993176290788788613236394164217913903193460153156148577 n^{3} + 26291086338829006146685190902274794609790590126442643207 n^{2} + 386586835654943958032917399096413408585143591344588106730 n + 2435768447597256875187620494977172950016049041824785765640\right) a{\left(n + 45 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(13927950753948104797485259709369276083010107587 n^{7} + 4110357702253543302429372049364803672437673393693 n^{6} + 519781701285665509183012647016180332570546512093655 n^{5} + 36510172166825219586392456659464218968838371703115295 n^{4} + 1538438883706393883199796066249411166300256272321015598 n^{3} + 38888231528849214548328395486975595993297403599207537652 n^{2} + 546011739783453278809896527743021305946153805591086958280 n + 3284923464794196170877823401449347952177776627478671503840\right) a{\left(n + 43 \right)}}{1209637273600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(15011652772226086634542142730757033663191004347 n^{7} + 4534468599282737104755143504123155432680245912156 n^{6} + 586917391351422921047180927361636969386710183956786 n^{5} + 42197133052030006927591468826699876995067058618495740 n^{4} + 1819979083523336859575028220125976971826234392805682223 n^{3} + 47089664984153450852544285750541858923815076653128828664 n^{2} + 676760482045553101076291377357192432364286124472214894324 n + 4167622719360294398157749671747758927546266029812166024800\right) a{\left(n + 44 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(37058137659285016608985369473661090774226848452 n^{7} + 12222071545317157624425200890037927608045679247791 n^{6} + 1727389134903374785475490288880227529852772720647647 n^{5} + 135619893786729213836725607262127395076263198354445205 n^{4} + 6388040340528420657564931642053397796480075540759885433 n^{3} + 180518758472226924270903567895377277623015401128093115444 n^{2} + 2833760170324407164517654494863401849001599427880396497788 n + 19062725503885162295875155614247901706282069344959381723120\right) a{\left(n + 48 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(55154673054395802786342209741080472056490828639 n^{7} + 17428381639844556128298664334864299913918878167329 n^{6} + 2359917762152893307613877368970885573104134510332715 n^{5} + 177502656811030472804132360542033348606287581062435295 n^{4} + 8009466249950370732027870571848721377502881979492213166 n^{3} + 216816218715298893422487007807500188238815133732942120296 n^{2} + 3260200924179095117285593846741947308314380731433448579920 n + 21006598592097832825683863030131633793846600455180940364960\right) a{\left(n + 46 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(59824763294903452336105394608430721707393118520 n^{7} + 25564542393638882530189505001784665111641985118838 n^{6} + 4679344434566049124234114136751657146773008189617419 n^{5} + 475576025826807950838709862821416762985165130401784420 n^{4} + 28984099743481566682956629404452646065433081742601626665 n^{3} + 1059247101090635805421405327083820613310848871783580378682 n^{2} + 21493181692677799886229618431598035955480529353418660283136 n + 186791579274330004238981599688276055688955672015201275116960\right) a{\left(n + 62 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{3 \left(76708914427716330269670560874037602618673753725 n^{7} + 31646489542150350488676527293103917415678033034423 n^{6} + 5593417439715525655821702719449869246059086369619634 n^{5} + 549044323666642523446856634600109763724200116364444685 n^{4} + 32325248425647867763657518101611395480862214749825225765 n^{3} + 1141517363200923995623166833175822612534232876446369079732 n^{2} + 22387589939344968591229881945307512908834254509882278865236 n + 188110765799515248080050476196646186980623084710806331344560\right) a{\left(n + 59 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(86800085565472332716983829698688680985347381945 n^{7} + 34473608492798650861600972684740535016895905858932 n^{6} + 5854394603717750076996951836931249203721222816955855 n^{5} + 551179230235950628220407601525450662945610709968241130 n^{4} + 31075291872541953891735805003381149003025301014262163820 n^{3} + 1049330861418116938248723075585321186794932466001574003858 n^{2} + 19652447838990000651877510180021349737276475505299705655420 n + 157497286978581370914152153440228870808169529699625197452480\right) a{\left(n + 55 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(90229129864920906931405913874061051359809798569 n^{7} + 38210484082529279482029857140003417152474754251564 n^{6} + 6932363347469263216951755738517742578443817060996423 n^{5} + 698467699056229535913955993609349554917240998859762015 n^{4} + 42208517416321562212212322169763396472195758336730059166 n^{3} + 1529823156640239593638206951548900681677970507630123800101 n^{2} + 30792460326177124809909344615591088287823383532457113961602 n + 265523848439713435687683490290828441445905729315243501422760\right) a{\left(n + 61 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(94106042186013230503606831514649522929574181061 n^{7} + 30389539176680431557660601378275109479442805677969 n^{6} + 4205373249656559981664655178497836163024987766350975 n^{5} + 323267622170930471277657174160869156103451036003051875 n^{4} + 14908019050423607862843383277537343751318024153076469844 n^{3} + 412455206921895594986402051915463259642966266708045876436 n^{2} + 6338814231911639100498355378986503254139392770753176743440 n + 41745372451273107079508296993238866664813309407277589960480\right) a{\left(n + 47 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(110458115342262201819604379590348543021629445960 n^{7} + 46200866225437716080263663574259211826488132258571 n^{6} + 8279061211020792926085024973825054856379518063300779 n^{5} + 823940151991081902064744264389093383504634300991060475 n^{4} + 49183371052569735508108130916556972907474029523605027525 n^{3} + 1760960168888983440973513180752047189939352057560200781114 n^{2} + 35015962403055118182313720752950694164551148898168528114576 n + 298307326572209753109421858343488479526200053452776899592600\right) a{\left(n + 60 \right)}}{37801164800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(112488263392409967905322714840234975134534606347 n^{7} + 39842850489277961893499722220945290762913106799671 n^{6} + 6043411309183601899968951013083744408967040578430623 n^{5} + 508854114494914701190942737855622525746392460892720245 n^{4} + 25685809734313469698671039661245523477713383025023600998 n^{3} + 777260913989489448975725999511212623476090819237114238524 n^{2} + 13054913279697461302196990712246747206738279971335306305112 n + 93884331352485617804957374852652072420929363679698886969760\right) a{\left(n + 53 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(158886602222875615647184525255487293559993985722 n^{7} + 63747705661235168108302448997585385029745525073792 n^{6} + 10955512672470028665939236216006291080032556686549119 n^{5} + 1045450293347617366152740186936604846840298273527569195 n^{4} + 59828381566725597662057756589879518686950160892185761593 n^{3} + 2053292080915673485451964326284299799528406025597392483573 n^{2} + 39130560258975322109223959711323481688511572362256214947126 n + 319451240642740084576560116119126473209902143508268012148240\right) a{\left(n + 57 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(161048907491186078216592841817829348585987042277 n^{7} + 57015428266990292004210690580154341798418417225181 n^{6} + 8650032026783487613524541697260041718516200913708345 n^{5} + 729020629101262988680701700269517129109719144450720035 n^{4} + 36862464371360945287269690582312677068350342295519032178 n^{3} + 1118287347167007379691815023959927402895856871764336662384 n^{2} + 18846269423348553705628883380423371360822388151277045730080 n + 136112618472167087809527471646603712872196819960977244935680\right) a{\left(n + 52 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(164129410123961967380727034627086371637630506459 n^{7} + 57308218847271733597133747481100134654487820645906 n^{6} + 8575514470005892838246268966086226023940551652034202 n^{5} + 712888349418748323201525274377863339184548214075448010 n^{4} + 35557049474813717385557292272134832955351301580299447271 n^{3} + 1064079005895655986770455006773378535404494938990684364324 n^{2} + 17690633155580312454564843315459551690140928270020708666548 n + 126046597571621618729309910456254347557721049944589226124080\right) a{\left(n + 51 \right)}}{302409318400 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(199660675038076155200048580521652545095814607535 n^{7} + 79219202563081279246118193373069300895216725757125 n^{6} + 13459136785215457866567996967967454898712369493219184 n^{5} + 1269329617365917535141669885496287880949720230735993705 n^{4} + 71769810054866408606851874652055299658280483314662819985 n^{3} + 2432954748685929093015027724459384960580374698133276028770 n^{2} + 45786862094599014773413876846601537379586881118225908576576 n + 369037533235734412829859802530412163735253710014793679439920\right) a{\left(n + 56 \right)}}{151204659200 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(206799660655640225013429468179137105576200729661 n^{7} + 84114428694575641283097673163571845682284366699050 n^{6} + 14656764488161789648046657947101073028279888122968997 n^{5} + 1418276533250466428506237482847167370938135810118990870 n^{4} + 82312616418781348817182363351274601478285720150222918234 n^{3} + 2865220596474863329189073819837007060221192518131787610380 n^{2} + 55387963066592448389578771221003513080356961270425178166528 n + 458708891477914765084612579765430012123041824349182977531520\right) a{\left(n + 58 \right)}}{75602329600 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} + \frac{\left(214397462582502645158753244355946100849599634205 n^{7} + 72160016801962828998998755206989065468054524478969 n^{6} + 10408042955773663712003801207406380345601832527388159 n^{5} + 833952081274200500384786890210988064194378983387211275 n^{4} + 40090019077937500612848049133511176142322768862905091740 n^{3} + 1156257033633854545126927509815673701304047174532784593556 n^{2} + 18525567618641650237032111049626657942616098776090739002016 n + 127198852411390743973306957328676599110331801266746488785920\right) a{\left(n + 49 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)} - \frac{\left(281595187866345549094538697249055792836373518841 n^{7} + 96617173147628910276458714563829887050082554579671 n^{6} + 14206593285967821803156464277953903313762593162452061 n^{5} + 1160477387274332617370503436204565036338821619151816365 n^{4} + 56874633209437210039116946950716926631933598571057674874 n^{3} + 1672384218347481330833596103630876896132564412138941762484 n^{2} + 27319052191489276372713262727538790473074593002116551974024 n + 191250856375632357460969885879216756387603348072558896855840\right) a{\left(n + 50 \right)}}{604818636800 \left(n + 110\right) \left(n + 111\right) \left(n + 112\right) \left(n + 113\right) \left(n + 115\right) \left(2 n + 225\right) \left(2 n + 227\right)}, \quad n \geq 114\)
This specification was found using the strategy pack "Insertion Row And Col Placements Tracked Fusion" and has 45 rules.
Finding the specification took 169 seconds.
Copy 45 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{5}\! \left(x \right) &= x F_{5} \left(x \right)^{4}+x^{2} F_{5} \left(x \right)^{2}-F_{5} \left(x \right)^{3} x -2 x F_{5} \left(x \right)^{2}-F_{5} \left(x \right)^{3}+2 F_{5}\! \left(x \right) x +3 F_{5} \left(x \right)^{2}-2 F_{5}\! \left(x \right)+1\\
F_{6}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{8}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= 0\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14} \left(x \right)^{2} F_{15}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= x\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= x F_{20} \left(x \right)^{4}+x^{2} F_{20} \left(x \right)^{2}+3 x F_{20} \left(x \right)^{3}+2 x^{2} F_{20}\! \left(x \right)+x F_{20} \left(x \right)^{2}-F_{20} \left(x \right)^{3}+x^{2}-F_{20}\! \left(x \right) x +F_{20}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{14}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{19}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{15}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{14}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{2}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{15}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{19}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{14}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{19}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{2}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{15}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{35}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 44 rules.
Finding the specification took 556 seconds.
Copy 44 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{16}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= x F_{19} \left(x \right)^{4}+x^{2} F_{19} \left(x \right)^{2}-F_{19} \left(x \right)^{3} x -2 x F_{19} \left(x \right)^{2}-F_{19} \left(x \right)^{3}+2 F_{19}\! \left(x \right) x +3 F_{19} \left(x \right)^{2}-2 F_{19}\! \left(x \right)+1\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{17}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{19}\! \left(x \right) F_{22}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{25} \left(x \right)^{2} F_{17}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{25}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{0}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{22}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{25}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{29}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 27 rules.
Finding the specification took 1902 seconds.
Copy 27 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x F_{14} \left(x \right)^{4}+x^{2} F_{14} \left(x \right)^{2}-F_{14} \left(x \right)^{3} x -2 x F_{14} \left(x \right)^{2}-F_{14} \left(x \right)^{3}+2 F_{14}\! \left(x \right) x +3 F_{14} \left(x \right)^{2}-2 F_{14}\! \left(x \right)+1\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{14}\! \left(x \right) F_{17}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18} \left(x \right)^{2} F_{17}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{0}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= -F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= \frac{F_{26}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{26}\! \left(x \right) &= F_{9}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob" and has 52 rules.
Finding the specification took 404 seconds.
Copy 52 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{16}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{17}\! \left(x \right) &= x\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= x F_{19} \left(x \right)^{4}+x^{2} F_{19} \left(x \right)^{2}-F_{19} \left(x \right)^{3} x -2 x F_{19} \left(x \right)^{2}-F_{19} \left(x \right)^{3}+2 F_{19}\! \left(x \right) x +3 F_{19} \left(x \right)^{2}-2 F_{19}\! \left(x \right)+1\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{17}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{17}\! \left(x \right) F_{19}\! \left(x \right) F_{22}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{25} \left(x \right)^{2} F_{17}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{25}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{22}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{15}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{0}\! \left(x \right) F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= -F_{44}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= \frac{F_{41}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{44}\! \left(x \right) &= -F_{47}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= \frac{F_{46}\! \left(x \right)}{F_{17}\! \left(x \right)}\\
F_{46}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{17}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{25}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{29}\! \left(x \right)\\
\end{align*}\)