Av(12354, 12453, 21354, 21453)
View Raw Data
Generating Function
\(\displaystyle \frac{-x \sqrt{-8 x +1}-x +2}{4 x^{2}-4 x +2}\)
Counting Sequence
1, 1, 2, 6, 24, 116, 632, 3720, 23072, 148528, 983072, 6647776, 45727616, 318947136, 2250473344, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{2}-2 x +1\right) F \left(x \right)^{2}+\left(x -2\right) F \! \left(x \right)+x +1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a{\left(n + 3 \right)} = \frac{8 \left(2 n + 1\right) a{\left(n \right)}}{n + 2} - \frac{6 \left(3 n + 2\right) a{\left(n + 1 \right)}}{n + 2} + \frac{2 \left(5 n + 4\right) a{\left(n + 2 \right)}}{n + 2}, \quad n \geq 3\)

This specification was found using the strategy pack "Point And Row And Col Placements Tracked Fusion Tracked Component Fusion Req Corrob Symmetries" and has 50 rules.

Finding the specification took 53146 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 50 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{48}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{10}\! \left(x \right) &= \frac{F_{11}\! \left(x \right)}{F_{17}\! \left(x \right)}\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{18}\! \left(x , y\right)+F_{19}\! \left(x , y\right)\\ F_{14}\! \left(x \right) &= 0\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{16}\! \left(x , y\right) &= -\frac{y \left(F_{13}\! \left(x , 1\right)-F_{13}\! \left(x , y\right)\right)}{-1+y}\\ F_{17}\! \left(x \right) &= x\\ F_{18}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{17}\! \left(x \right)\\ F_{19}\! \left(x , y\right) &= F_{20}\! \left(x , y\right) F_{38}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{39}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)+F_{4}\! \left(x \right)\\ F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right) F_{38}\! \left(x , y\right)\\ F_{24}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{25}\! \left(x , y\right)+F_{35}\! \left(x , y\right)\\ F_{25}\! \left(x , y\right) &= F_{26}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)\\ F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{31}\! \left(x \right)\\ F_{28}\! \left(x , y\right) &= -\frac{-y F_{29}\! \left(x , y\right)+F_{29}\! \left(x , 1\right)}{-1+y}\\ F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right)\\ F_{30}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{24}\! \left(x , y\right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{17}\! \left(x \right) F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= -F_{34}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{24}\! \left(x , 1\right)\\ F_{35}\! \left(x , y\right) &= F_{36}\! \left(x , y\right)\\ F_{36}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{37}\! \left(x , y\right)\\ F_{26}\! \left(x , y\right) &= F_{17}\! \left(x \right) F_{37}\! \left(x , y\right)\\ F_{38}\! \left(x , y\right) &= y x\\ F_{39}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)\\ F_{40}\! \left(x , y\right) &= F_{38}\! \left(x , y\right) F_{41}\! \left(x , y\right)\\ F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)+F_{44}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= F_{38}\! \left(x , y\right) F_{42}\! \left(x , y\right)\\ F_{43}\! \left(x , y\right) &= F_{13}\! \left(x , y\right)\\ F_{44}\! \left(x , y\right) &= F_{38}\! \left(x , y\right) F_{45}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{38}\! \left(x , y\right) F_{45}\! \left(x , y\right)\\ F_{46}\! \left(x , y\right) &= F_{47}\! \left(x , y\right)\\ F_{42}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)+F_{47}\! \left(x , y\right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{10}\! \left(x \right) F_{17}\! \left(x \right)\\ \end{align*}\)