Av(12354, 12453, 13254, 13452, 14253, 14352, 21354, 21453, 23154, 24153, 31254, 32154)
View Raw Data
Generating Function
\(\displaystyle \frac{2 x^{2}-4 x -1+\sqrt{4 x^{4}+12 x^{2}-8 x +1}}{8 x \left(x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 24, 108, 512, 2504, 12528, 63824, 330016, 1727712, 9140352, 48792256, 262485760, ...
Implicit Equation for the Generating Function
\(\displaystyle 4 x \left(x -1\right) F \left(x \right)^{2}+\left(-2 x^{2}+4 x +1\right) F \! \left(x \right)-x -1 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a{\left(n + 5 \right)} = \frac{4 n a{\left(n \right)}}{n + 6} - \frac{4 n a{\left(n + 1 \right)}}{n + 6} + \frac{12 \left(n + 3\right) a{\left(n + 2 \right)}}{n + 6} + \frac{3 \left(3 n + 14\right) a{\left(n + 4 \right)}}{n + 6} - \frac{4 \left(5 n + 18\right) a{\left(n + 3 \right)}}{n + 6}, \quad n \geq 5\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 23 rules.

Finding the specification took 5840 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= -F_{13}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{19}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{17}\! \left(x \right) &= \frac{F_{18}\! \left(x \right)}{F_{19}\! \left(x \right)}\\ F_{18}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{19}\! \left(x \right) &= x\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point And Row Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 23 rules.

Finding the specification took 2633 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 23 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{11}\! \left(x \right) &= \frac{F_{12}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{12}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{13}\! \left(x \right) &= x\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{5}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{0}\! \left(x \right) F_{13}\! \left(x \right) F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= \frac{F_{19}\! \left(x \right)}{F_{13}\! \left(x \right)}\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{21}\! \left(x \right) &= -F_{22}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)\\ \end{align*}\)