Av(12354, 12453, 13254, 13452, 14253, 14352, 15243, 15342, 23451, 24351, 25341)
View Raw Data
Generating Function
\(\displaystyle \frac{-\sqrt{6 x -1}\, \left(2 x -1\right)^{\frac{3}{2}}+6 x^{3}-10 x^{2}+2 x +1}{2 x \left(3 x -2\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 24, 109, 522, 2574, 12964, 66426, 345300, 1816976, 9660732, 51825093, 280168474, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(3 x -2\right)^{2} F \left(x \right)^{2}+\left(-6 x^{3}+10 x^{2}-2 x -1\right) F \! \left(x \right)+x^{3}-2 x^{2}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = \frac{18 \left(1+n \right) a \! \left(n \right)}{n +4}-\frac{3 \left(13+8 n \right) a \! \left(1+n \right)}{n +4}+\frac{\left(51+19 n \right) a \! \left(n +2\right)}{2 n +8}, \quad n \geq 4\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 29 rules.

Found on January 23, 2022.

Finding the specification took 167 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 29 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{28}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\ F_{9}\! \left(x , y\right) &= F_{10}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{11}\! \left(x , y\right)\\ F_{11}\! \left(x , y\right) &= F_{12}\! \left(x , y\right)\\ F_{12}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{14}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{13}\! \left(x , y\right) &= y x\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{13}\! \left(x , y\right) F_{14}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{18}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{19}\! \left(x , y\right) F_{28}\! \left(x \right)\\ F_{19}\! \left(x , y\right) &= \frac{F_{20}\! \left(x , y\right) y -F_{20}\! \left(x , 1\right)}{-1+y}\\ F_{20}\! \left(x , y\right) &= F_{21}\! \left(x , y\right)+F_{9}\! \left(x , y\right)\\ F_{21}\! \left(x , y\right) &= F_{22}\! \left(x , y\right)\\ F_{22}\! \left(x , y\right) &= F_{23}\! \left(x , y\right) F_{28}\! \left(x \right)\\ F_{23}\! \left(x , y\right) &= F_{24}\! \left(x , y\right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x , y\right) &= F_{19}\! \left(x , y\right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= -F_{4}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{21}\! \left(x , 1\right)\\ F_{28}\! \left(x \right) &= x\\ \end{align*}\)

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 20 rules.

Found on January 22, 2022.

Finding the specification took 8 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 20 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x , 1\right)\\ F_{4}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\ F_{5}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{7}\! \left(x \right)\\ F_{6}\! \left(x , y\right) &= -\frac{-y F_{4}\! \left(x , y\right)+F_{4}\! \left(x , 1\right)}{-1+y}\\ F_{7}\! \left(x \right) &= x\\ F_{8}\! \left(x , y\right) &= F_{17}\! \left(x , y\right) F_{9}\! \left(x , y\right)\\ F_{9}\! \left(x , y\right) &= \frac{y F_{10}\! \left(x , 1, y\right)-F_{10}\! \left(x , \frac{1}{y}, y\right)}{-1+y}\\ F_{10}\! \left(x , y , z\right) &= F_{11}\! \left(x , y z , z\right)\\ F_{11}\! \left(x , y , z\right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x , y , z\right)+F_{18}\! \left(x , y , z\right)\\ F_{12}\! \left(x , y , z\right) &= F_{13}\! \left(x , y , z\right)\\ F_{13}\! \left(x , y , z\right) &= F_{11}\! \left(x , y , z\right) F_{14}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\ F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)\\ F_{15}\! \left(x , y\right) &= F_{16}\! \left(x , y\right)\\ F_{16}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= y x\\ F_{18}\! \left(x , y , z\right) &= F_{17}\! \left(x , z\right) F_{19}\! \left(x , y , z\right)\\ F_{19}\! \left(x , y , z\right) &= -\frac{z F_{10}\! \left(x , 1, z\right)-y F_{10}\! \left(x , \frac{y}{z}, z\right)}{-z +y}\\ \end{align*}\)