Av(12354, 12453, 12543, 21354, 21453, 21543, 31254, 31452, 31542, 41253, 41352)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 109, 523, 2584, 13017, 66535, 344048, 1796062, 9451401, 50077144, 266905496, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{5} \left(-2+x \right)^{2} \left(5 x -6\right) \left(x -1\right)^{4} F \left(x \right)^{8}-x^{4} \left(-2+x \right) \left(15 x^{4}-54 x^{3}+57 x^{2}+10 x -32\right) \left(x -1\right)^{3} F \left(x \right)^{7}+x^{3} \left(-2+x \right) \left(16 x^{6}-75 x^{5}+112 x^{4}-24 x^{3}-66 x^{2}+x +42\right) \left(x -1\right)^{2} F \left(x \right)^{6}-x^{2} \left(-2+x \right) \left(x -1\right) \left(7 x^{8}-53 x^{7}+130 x^{6}-133 x^{5}+64 x^{4}-77 x^{3}+117 x^{2}-29 x -30\right) F \left(x \right)^{5}+x \left(x^{11}-20 x^{10}+124 x^{9}-363 x^{8}+601 x^{7}-646 x^{6}+504 x^{5}-229 x^{4}-99 x^{3}+206 x^{2}-56 x -24\right) F \left(x \right)^{4}+\left(2 x^{11}-31 x^{10}+143 x^{9}-307 x^{8}+359 x^{7}-242 x^{6}+79 x^{5}+5 x^{4}+25 x^{3}-81 x^{2}+48 x +4\right) F \left(x \right)^{3}+\left(3 x^{10}-30 x^{9}+97 x^{8}-148 x^{7}+137 x^{6}-115 x^{5}+114 x^{4}-101 x^{3}+57 x^{2}-8 x -12\right) F \left(x \right)^{2}+\left(2 x^{9}-17 x^{8}+46 x^{7}-61 x^{6}+43 x^{5}+x^{4}-40 x^{3}+49 x^{2}-31 x +12\right) F \! \left(x \right)+x^{8}-6 x^{7}+11 x^{6}-5 x^{5}-15 x^{4}+32 x^{3}-30 x^{2}+15 x -4 = 0\)
Recurrence
\(\displaystyle a(0) = 1\)
\(\displaystyle a(1) = 1\)
\(\displaystyle a(2) = 2\)
\(\displaystyle a(3) = 6\)
\(\displaystyle a(4) = 24\)
\(\displaystyle a(5) = 109\)
\(\displaystyle a(6) = 523\)
\(\displaystyle a(7) = 2584\)
\(\displaystyle a(8) = 13017\)
\(\displaystyle a(9) = 66535\)
\(\displaystyle a(10) = 344048\)
\(\displaystyle a(11) = 1796062\)
\(\displaystyle a(12) = 9451401\)
\(\displaystyle a(13) = 50077144\)
\(\displaystyle a(14) = 266905496\)
\(\displaystyle a(15) = 1430000100\)
\(\displaystyle a(16) = 7696981061\)
\(\displaystyle a(17) = 41600690813\)
\(\displaystyle a(18) = 225684036414\)
\(\displaystyle a(19) = 1228492790059\)
\(\displaystyle a(20) = 6707929539258\)
\(\displaystyle a(21) = 36731467109263\)
\(\displaystyle a(22) = 201662771495389\)
\(\displaystyle a(23) = 1109854769857390\)
\(\displaystyle a(24) = 6121874642115090\)
\(\displaystyle a(25) = 33838690400309928\)
\(\displaystyle a(26) = 187410251965141056\)
\(\displaystyle a(27) = 1039847286067461771\)
\(\displaystyle a(28) = 5779536734008066832\)
\(\displaystyle a(29) = 32175032843789958515\)
\(\displaystyle a(30) = 179393462873669999491\)
\(\displaystyle a(31) = 1001655621630183263269\)
\(\displaystyle a(32) = 5600412970772730261437\)
\(\displaystyle a(33) = 31353048313329661342706\)
\(\displaystyle a(34) = 175739063408934006252013\)
\(\displaystyle a(35) = 986185364535104062231398\)
\(\displaystyle a(36) = 5540198984842507231576143\)
\(\displaystyle a(37) = 31156263606211729446049797\)
\(\displaystyle a(38) = 175386764559985117866162908\)
\(\displaystyle a(39) = 988233149507666876877964074\)
\(\displaystyle a(40) = 5573323204308053697954348352\)
\(\displaystyle a(41) = 31458900051229645987328014267\)
\(\displaystyle a(42) = 177717723385015021876374685350\)
\(\displaystyle a(43) = 1004755279273942974861459741436\)
\(\displaystyle a(44) = 5684831527585770461092301872778\)
\(\displaystyle a(45) = 32187624374077331374176029361953\)
\(\displaystyle a(46) = 182373345117812705191276821461948\)
\(\displaystyle a(47) = 1034005285702251467855018036525432\)
\(\displaystyle a(48) = 5866264579592253371395307255113304\)
\(\displaystyle a(49) = 33301761886430362328182157670413811\)
\(\displaystyle a(50) = 189159970058517260101610816579848166\)
\(\displaystyle a(51) = 1075073272045609858605978539355504727\)
\(\displaystyle a(52) = 6113424559081017320458414847093424254\)
\(\displaystyle a(53) = 34782441228712331452810148074001349431\)
\(\displaystyle a(54) = 197995978994504033176594622741064975091\)
\(\displaystyle a(55) = 1127627628915550778193860159737861869679\)
\(\displaystyle a(56) = 6425111778629791353487848781066704447696\)
\(\displaystyle a(57) = 36626404819119911960246006156237538272787\)
\(\displaystyle a(58) = 208881437676757145240800747164912950937844\)
\(\displaystyle a(59) = 1191766052772846921391951228195803923178111\)
\(\displaystyle a(60) = 6802393252737834220549554786201153791222002\)
\(\displaystyle a(61) = 38842418605670101907154441321856824647746934\)
\(\displaystyle a(62) = 221880485590182175516743144834258128157891309\)
\(\displaystyle a(63) = 1267929269623256181443166543277362827530315307\)
\(\displaystyle a(64) = 7248180888678054058645673208511694298824054297\)
\(\displaystyle a(65) = 41449215771815994844991648098771059350107244425\)
\(\displaystyle a(66) = 237111351249788559937834550679872687463272318757\)
\(\displaystyle a(67) = 1356852808958277486840868190100785752416729071270\)
\(\displaystyle a(68) = 7767000188888409072568316572682951061679904454181\)
\(\displaystyle a(69) = 44474397730516763078463749430560556342634019456759\)
\(\displaystyle a(70) = 254741195348660767207933278332024143378816861011518\)
\(\displaystyle a(71) = 1459543217248402681939294300014499238144019877822958\)
\(\displaystyle a(72) = 8364883148765210211323181721160323107321916639018945\)
\(\displaystyle a(73) = 47953968755548407784369644401891290322097040443601097\)
\(\displaystyle a(74) = 274984199938578092388162619869346835329760676835677491\)
\(\displaystyle a(75) = 1577270970765416372287181686361933273285526244615957695\)
\(\displaystyle a(76) = 9049347439862791988267557239142420120654898839792394044\)
\(\displaystyle a(77) = 51932318455691475326562276188007337479877468965114949150\)
\(\displaystyle a(78) = 298101992785818832969971413473346014275077978270547821720\)
\(\displaystyle a(79) = 1711575622444138290262744755888349937262087880265862075368\)
\(\displaystyle a(80) = 9829439998401313114465584565357134244304502875071520906286\)
\(\displaystyle a(81) = 56462544979589504051739590547140441795402392167496730965938\)
\(\displaystyle a(82) = 324405883337320326721102076788159154229496008143693222714367\)
\(\displaystyle a(83) = 1864280629222940464204340805901039186195599901171746532009117\)
\(\displaystyle a(84) = 10715832602464798351489671619967155018286791000330978986002758\)
\(\displaystyle a(85) = 61607058821274095931563301041918953226350866475573788706250575\)
\(\displaystyle a(86) = 354260620670720507657773027067700066649427961586531665991022380\)
\(\displaystyle a(87) = 2037516474698598862746093588841611311364872426800924244186782922\)
\(\displaystyle a(88) = 11720962875128303468230080782069657992519931581715962342384967879\)
\(\displaystyle a(89) = 67438436520731456435728909607029993789036447383685232987794939797\)
\(\displaystyle a(90) = 388089532204945592215949786229654654479598994882354530629100868680\)
\(\displaystyle a(91) = 2233751453058449139370133828117934314787202763850979485591754623811\)
\(\displaystyle a(92) = 12859217966585411831087331644432164880415036404660703319332391955746\)
\(\displaystyle a(93) = 74040513014019571381698351605314680263814557179068332590003205112022\)
\(\displaystyle a(94) = 426381001594747769342969112783877997678970616621065192989676039698892\)
\(\displaystyle a(95) = 2455829992669709027114433104881573584400168173134390104490517252983650\)
\(\displaystyle a(96) = 14147160815079077907452986512404770834923413718188918443098980386102444\)
\(\displaystyle a(97) = 81509715121670179842167827369873954799453576390045732604070267481584371\)
\(\displaystyle a(98) = 469696315844261637819708629659352015550456961488426590020127675257223412\)
\(\displaystyle a(99) = 2707018772955194242359608912151799696645864698111324506887550284833903313\)
\(\displaystyle a(100) = 15603800862838772622724727906766010756995155288092826118433450992668232886\)
\(\displaystyle a(101) = 89956649128136225243012002020036458352710415683521720733585514354834351119\)
\(\displaystyle a(102) = 518678967371225294668544713756843205362782243232148370989463386546279444817\)
\(\displaystyle a(103) = 2991061186231533648424500624240257488894569780536451918708105484937118354187\)
\(\displaystyle a(104) = 17250912706732827904914542290636562978521676880750335839870585032563781032357\)
\(\displaystyle a(105) = 99507964078099823106657638077675543401941789595788243934207938958939141658241\)
\(\displaystyle a(106) = 574065543911646033384523548863708742362924234778587357297096958700646638684769\)
\(\displaystyle a(107) = 3312240953921549187340018164351675432530703173745056000974972580779734094862829\)
\(\displaystyle a(108) = 19113407579005727703192593241709928740537970077344649402844630344958353167368419\)
\(\displaystyle a(109) = 110308520228689800108610615703398296125539512930961666805531506929106985379372086\)
\(\displaystyle a(110) = 636698382475500680874550000934370568498618797755458505934277991656136048535186406\)
\(\displaystyle a(111) = 3675455947795125100657891585135502547171314570970133405519875339262343509608724515\)
\(\displaystyle a(112) = 21219763902414260027085112022832326949290253458517964591610629879929442308299631914\)
\(\displaystyle a(113) = 122523899668509701313863796556693625747585203764565804270989260416408521252775605364\)
\(\displaystyle a(114) = 707540206218304715269093877680851628359646255198598685564052443573172936548823219229\)
\(\displaystyle a(115) = 4086303507971194079667461507782739338681860674961635083086164558661681601476101944402\)
\(\displaystyle a(116) = 23602524530783108995641782717508464464931593467639944185152628945537630286118688584323\)
\(\displaystyle a(117) = 136343303884051005892079452153195312963861816521142373845661322193098584604966851948243\)
\(\displaystyle a(118) = 787691007376090555915569903891545019197922002009370449705376712206431763345331136322275\)
\(\displaystyle a(119) = 4551178802383182348037169779052070855534775911535316196225949642398314135879042220296919\)
\(\displaystyle a(120) = 26298869734142539708543071463685049072803831597544615179652379882167887839978982252862416\)
\(\displaystyle a(121) = 151982891359720096682254593432470373526965888331064621829178636056572390781057181564852717\)
\(\displaystyle a(122) = 878407487128527353184500359847576713869845772280163829111354204966587813659005330457842336\)
\(\displaystyle a(123) = 5077388046971564117910341369480972265985884308413380612141940672221463941197164440476640644\)
\(\displaystyle a(124) = 29351276569582345949471437180730063113918890111343243490927168821815403863395816821328070150\)
\(\displaystyle a(125) = 169689617423918728967978072514541585581880334304100236958873016768189108182764920771210141565\)
\(\displaystyle a(126) = 981125415960718461069485699495151406943624579699399806890327567563470128031411767364555251262\)
\(\displaystyle a(127) = 5673278710552464150162721794237903075255331999073739786148927934207648747735275431631325313538\)
\(\displaystyle a(128) = 32808277041840496535298444999226929042981911072253013620555175702966122402796800620370138569687\)
\(\displaystyle a(129) = 189745648761467176827268068528167744954198254949709932646522961627140356635629753288547895902140\)
\(\displaystyle a(130) = 1097485337243023643607797968864782459679861395540089960426714374773569891160921078123319496929717\)
\(\displaystyle a(131) = 6348389171257593088965472273564250024048082479596067784877701081080440587711440513549646118690159\)
\(\displaystyle a(132) = 36725329447151506188734744849303177144862302070830994221556008967875548392235793253521675212522020\)
\(\displaystyle a(133) = 212473436559879964512272026592440242076048192879861796899765178915452593076501584622671018609248568\)
\(\displaystyle a(134) = 1229362103798311123866803690243603361464819447830636065607800887003942175847842944137123959094594329\)
\(\displaystyle a(135) = 7113620680924921118088443914001206139172343443143952767573630280177572673089918279106713945971016174\)
\(\displaystyle a(136) = 41165819557120920877682846340073994738473586060224642203784241970358618044917141813924015462407104506\)
\(\displaystyle a(137) = 238241545412468205665819392030054146039000830604420742614102290726570858792140009808168439544025419338\)
\(\displaystyle a(138) = 1378898813715429348572475652407252703701575376524617039423736979848321515730059524180971721980997636963\)
\(\displaystyle a(139) = 7981434938658631648849169936020861832210238350646724698260031736177225021460924949273740398364866580207\)
\(\displaystyle a(140) = 46202210887010669805910444184919432676495243119708472065315535684139026807868495818643685898708075847843\)
\(\displaystyle a(141) = 267471350156311540818421834596120632258868800906970683254677483356806715651083201299269446519526928773971\)
\(\displaystyle a(142) = 1548545799275247611772167777352546461561743539603742806816338472342165858577626127399850808873608637651130\)
\(\displaystyle a(143) = 8966081084657803911721623559479644965825032407966096341774223178918985246011176464789649009017532870913529\)
\(\displaystyle a(144) = 51917366260774156887530412836870497399172118360567322954730731954877677664579808129516936710183521790537759\)
\(\displaystyle a(145) = 300644730101426517803597991899952444285677538367253887637497345469714206666103875914827194221434399339947416\)
\(\displaystyle a(146) = 1741105423454563130767651229379948487690209176417898594483862243040161672351877191150241270606318486261093488\)
\(\displaystyle a(147) = 10083856511188154405419984293322572366605688050318334130673227094034885643157563513533343914676101236687121184\)
\(\displaystyle a(148) = 58406066296387314242443636905560688213299321878461287993950949126609359155690110475560056467444900954028349283\)
\(\displaystyle a(149) = 338312909973971774901004017027439155081126749889951716437042109041790623013701976933111534894974211962959135930\)
\(\displaystyle a(150) = 1959783554182370937070339287679710763828008657663085353991317150811728310921580937836965131624843278431876755445\)
\(\displaystyle a(151) = 11353406561546058574913298309645140631671803061622623874955835063368001814866251985842269387935631814850441005648\)
\(\displaystyle a(152) = 65776754360986641453729350556108954325208849025093843656453212057879648454691453702370649216403505658732151844527\)
\(\displaystyle a(153) = 381106619766716226051175050783124584570364905102701749688930502672008069848553394458268392104430526010547281007409\)
\(\displaystyle a(154) = 2208248719759367752727556201765322694720061824965533620586564515131258230941747227887636271036961716257142565619631\)
\(\displaystyle a(155) = 12796068964097619562613437519390338314774737211797950042435262739531237852435823342179165979680119231972256633068785\)
\(\displaystyle a(156) = 74153542067845899550471663289399786449195164752020268370831077667494318150915350759175861804890661273324712130827110\)
\(\displaystyle a(157) = 429747772040305606199728246053931877063068743005053979785195791190377244820692444685931392883815672749736088757124288\)
\(\displaystyle a(158) = 2490700102386244620253432859719166750715968729639727464484062151556017186991783253095193866754142966845335543105697636\)
\(\displaystyle a(159) = 14436269743101880805636897540877240548707789868522305372243346739157595868746661392123401253838442346517050865769865705\)
\(\displaystyle a(160) = 83678514600252191091077543007624186968358132477100433831625472243920469897434963262698734162128707159587651146561306754\)
\(\displaystyle a(161) = 485062885596285416294179837396079108249282850132555943432031178079033283243647687155530272845457194185483299242848043792\)
\(\displaystyle a{\left(n + 162 \right)} = - \frac{9121858584337019970703125 n \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(n + 6\right) a{\left(n \right)}}{61096171662982052594912854016 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{263671875 \left(n + 1\right) \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(n + 6\right) \left(1594189064470282027 n + 11226698078226687378\right) a{\left(n + 1 \right)}}{122192343325964105189825708032 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{17578125 \left(n + 2\right) \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(n + 6\right) \left(427662805755991328617 n^{2} + 8017773268069560058612 n + 35154269222672737207791\right) a{\left(n + 2 \right)}}{122192343325964105189825708032 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{1171875 \left(n + 3\right) \left(n + 4\right) \left(n + 5\right) \left(n + 6\right) \left(393752555298025973554339 n^{3} + 10616443643946173101418097 n^{2} + 92846027975367982778534516 n + 264826328484107263361779116\right) a{\left(n + 3 \right)}}{122192343325964105189825708032 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{78125 \left(n + 4\right) \left(n + 5\right) \left(n + 6\right) \left(113642475155229087982102889 n^{4} + 4186390198237715649305523006 n^{3} + 56803054067003013079854451387 n^{2} + 337173400595061646909899430026 n + 739917283994335918214078662908\right) a{\left(n + 4 \right)}}{122192343325964105189825708032 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{15625 \left(n + 5\right) \left(n + 6\right) \left(16413953138034633864077659066 n^{5} + 759888949594058029362620121889 n^{4} + 13939230793208852765226384430856 n^{3} + 126661020638206083130832887027499 n^{2} + 570179810507150325141745230286170 n + 1017401562866898340488631629106920\right) a{\left(n + 5 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{3125 \left(n + 6\right) \left(153272063678113902857030945623 n^{6} + 4541764020725804761102395730643 n^{5} + 14161973574756608620314418811075 n^{4} - 913462214686863243321971792673195 n^{3} - 13510737738404830810934196828942498 n^{2} - 74625141587709727101905378528454848 n - 149369137393097249168561326178197920\right) a{\left(n + 6 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(1626031981459785646 n^{2} + 519710662592597062969 n + 41526651656970423293898\right) a{\left(n + 161 \right)}}{10754834405049966 \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(108064149301914143708 n^{3} + 41071381122128142400752 n^{2} + 4876010755884793136994595 n + 171351637072292134032511536\right) a{\left(n + 160 \right)}}{285771314191327668 \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(409288502908616861867220 n^{4} + 255319730061374559970263264 n^{3} + 59721565227991056626844275200 n^{2} + 6208055197732731088353721215807 n + 241975114791543031952651684132501\right) a{\left(n + 159 \right)}}{666799733113097892 \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(359523683415020753374636186 n^{5} + 279962909058226979302300275955 n^{4} + 87200508236508161690061049122488 n^{3} + 13579786538429394275398490322228659 n^{2} + 1057358221734628914855167095503543480 n + 32930359991050575201079725540567961560\right) a{\left(n + 158 \right)}}{8001596797357174704 \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(3505645744843237709533719162 n^{6} + 3266033133031713654330092611923 n^{5} + 1267806314694579108128517324371018 n^{4} + 262467127042819974874149673933289951 n^{3} + 30564011372447907901800062053647288440 n^{2} + 1898171126979116466047632434549465566066 n + 49117915149665420833442523418508006832960\right) a{\left(n + 157 \right)}}{1778132621634927712 \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(2032550941974403682574203820644 n^{7} + 2201937733530531616722479323805208 n^{6} + 1022313873783035263188081959085702161 n^{5} + 263683745181395373725916176824079174040 n^{4} + 40806192802782447101088361280233580753411 n^{3} + 3788893401684013537105624682926665981274212 n^{2} + 195442274193143676993046730834636435598380244 n + 4320560932870122365227035615081774466484415120\right) a{\left(n + 156 \right)}}{32006387189428698816 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(26013728623591147810123705774616 n^{7} + 28014514700764413692340318691799418 n^{6} + 12929458678920735015610090883715839063 n^{5} + 3315114910178996371393276867841124597420 n^{4} + 509989900252845816878720579743790190658049 n^{3} + 47072719847732878714761783629180660652258222 n^{2} + 2413781561315753234471957333270681597102325912 n + 53044858756357323326042631348177155171386742400\right) a{\left(n + 155 \right)}}{16003193594714349408 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{625 \left(110699662623699860502335756868253 n^{7} + 9282477819697254017473487586213361 n^{6} + 319431948915489675431607114941328145 n^{5} + 5910640016494181454752202490889498695 n^{4} + 63925405792809446330438829305433778402 n^{3} + 405811565580169520953942022124927014104 n^{2} + 1404144916412086143924379338962542641120 n + 2046999673948491709606642215435034127040\right) a{\left(n + 7 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(4419439109279204588384781599877666 n^{7} + 4730696080713682244760373339253248073 n^{6} + 2170204090582982385177931211107851817323 n^{5} + 553092810058587682184908763485863376104815 n^{4} + 84574823071503629221371452822075554097434479 n^{3} + 7759430035079102502556036023921986437722907472 n^{2} + 395494471253613786668146418626860313297886421372 n + 8639101797813611424413291925598332516559427806560\right) a{\left(n + 154 \right)}}{128025548757714795264 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{125 \left(8683908984900112434262572841063917 n^{7} + 750228185049242797897316767657632019 n^{6} + 27105836143269301324015301969701142085 n^{5} + 533261067733228514498301895216355848465 n^{4} + 6187881512676812928680625936908035426518 n^{3} + 42440374433246583835138788792407065696636 n^{2} + 159546933840534519032715132161272243219800 n + 253897206754390795933648778303058909355200\right) a{\left(n + 8 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{25 \left(19845821531726105036083591420260771 n^{7} + 1748201632553343087532568311832765956 n^{6} + 64863008381535927584772658584951106770 n^{5} + 1317895022213620971764523043923834963280 n^{4} + 15870364283924407989485991969881988406479 n^{3} + 113447034566928006599143165645542520790404 n^{2} + 446260169507040855275706580221557979094020 n + 745869757988326573674554534989356120814800\right) a{\left(n + 9 \right)}}{78552220709548353336316526592 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(22858623401690509585540937377128390 n^{7} + 24319581571293026507641027553530398757 n^{6} + 11088696927342161641510317732188471609040 n^{5} + 2808843814690227341179582928859048970486315 n^{4} + 426895010028602813295196880964223555593638610 n^{3} + 38927899280021398119119508226673777739906191848 n^{2} + 1972075311182540131702768752956160188613183390240 n + 42815830698771244392637961128285103092264272132480\right) a{\left(n + 153 \right)}}{36578728216489941504 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{25 \left(1051222715856536099004646531797372054 n^{7} + 132186821086463879345720387297310353539 n^{6} + 6640105572753408217809158210231651848953 n^{5} + 176352422801036427537348642336667641999637 n^{4} + 2707014963815106157424815161362621386501365 n^{3} + 24202403166996973453129484368243331659186024 n^{2} + 117312093316814449790837170706290711006117548 n + 238707314760816534860826237861783781283668080\right) a{\left(n + 10 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(5031160782874654010982218351727787316 n^{7} + 5319855665056040326422819548595977377944 n^{6} + 2410740922884021866521490718609301622559569 n^{5} + 606910349900443638214526278778577813660607050 n^{4} + 91673879476161617176326499099552545108360669179 n^{3} + 8308329929195099202244359029655706654494048212886 n^{2} + 418316653567266770808294722778729297526643131075176 n + 9026420988737210311679974617090428172353621348159040\right) a{\left(n + 152 \right)}}{512102195030859181056 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{5 \left(35944938680752868962936346259861858569 n^{7} + 4061213841093556826225132151180557599723 n^{6} + 193049547090881771945551609313694083990825 n^{5} + 5014885804241774693864193660048892689738745 n^{4} + 77016698912819778110933001718238620026818366 n^{3} + 700233787058863236103819174017452722516485652 n^{2} + 3493918825538266585810295599841245578723810120 n + 7387701754498636132744802531595950545119844800\right) a{\left(n + 11 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(69607092564748622058237953107140434260 n^{7} + 73146548135193892843013013893502805863116 n^{6} + 32942289325710408796566737987192273079220732 n^{5} + 8242094576163383346613996659306335681636529575 n^{4} + 1237282974799748158078369191611240646895088551540 n^{3} + 111441796142531670499191379158729024909740162747159 n^{2} + 5576362939157554225980141107166668276862081545692338 n + 119584127563599844987010457187952912143059213766176240\right) a{\left(n + 151 \right)}}{512102195030859181056 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(3422732779340137493734197563880162199074 n^{7} + 3574460855226379193126702245693949181673321 n^{6} + 1599809141405222190556940423186892024742218087 n^{5} + 397786607223461956618700282033442450397496357785 n^{4} + 59344468780008018813524061730317504070090187366211 n^{3} + 5312004557976858202420871601064236911314085679083554 n^{2} + 264156301287093241180571542508030470917979212230276928 n + 5629678195330897034465350583587427013171619551537803280\right) a{\left(n + 150 \right)}}{2048408780123436724224 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{5 \left(3732766078620700004347593279299792753545 n^{7} + 435175292754635456147215516855411786523446 n^{6} + 21489660501529549143205132413431284956999316 n^{5} + 583186222796647053155339271702828405086468710 n^{4} + 9400433411171476554557647190318838303052092415 n^{3} + 90060584112485442014152833197278353548889908884 n^{2} + 475105983668457043173116964065903236742254675524 n + 1065187608463377808944891362225366301235299954960\right) a{\left(n + 12 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{5 \left(39405025729539820610185915183116054433311 n^{7} + 4767295519792511661693728229814070539857254 n^{6} + 245287005988892199949224704502773095771831194 n^{5} + 6960299827150625067799005312253809196056138590 n^{4} + 117679006252725791704655714072536797605825700939 n^{3} + 1185803531848943478763664614541027495952713209556 n^{2} + 6595626589187824051859642844519918273735042761556 n + 15625132485910325709472787589746357729997138296400\right) a{\left(n + 13 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(75289455657121206855001454472418194752258 n^{7} + 78138233276095958100189206446994549750234691 n^{6} + 34754695032189397372597674221366413482426440300 n^{5} + 8587922517115856145228981463966769043466063687035 n^{4} + 1273242849155077221796087039925990912438748067548842 n^{3} + 113261644510234595734620082499993296943332838077931334 n^{2} + 5597308061451763784797818868334663256408717913968882180 n + 118548483318980891151834289299077348522551267206444852480\right) a{\left(n + 149 \right)}}{4096817560246873448448 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(1488616291521273182987898305996365130106740 n^{7} + 1535347054713563651590705774604668413397175448 n^{6} + 678658173729102959994958963703682436386307412669 n^{5} + 166655870020956511450131310744014687888217162733820 n^{4} + 24554941537360809456451364205281961825573454905752855 n^{3} + 2170730694562296062469305821479038101324324621011051432 n^{2} + 106610009815260198826977062866639352606395025488090699836 n + 2243937349418492009849936387155170947449588493518899220560\right) a{\left(n + 148 \right)}}{8193635120493746896896 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(1696482864912164046825097028382796080488728 n^{7} + 212538381090509181273353995323182019163500143 n^{6} + 11356272669472343407477146058212179333830804795 n^{5} + 335522266168482972686885058407332671620516654825 n^{4} + 5920706880706755150448588097304065939619203591137 n^{3} + 62407403005468584764702834129537821879676589988112 n^{2} + 363848222874242448743936978428844865477637191558420 n + 905213239943712559860517483113249496972496584596000\right) a{\left(n + 14 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(6630449006143410186639475515217755599038412 n^{7} + 6796333050190670707232575399961428916574128226 n^{6} + 2985569487381990069331865673037184354385017089073 n^{5} + 728626236770968764855089787646539034305990314307915 n^{4} + 106691855601230930363657586214981176739232902812653423 n^{3} + 9373603231743314472067930107048961102971472947956738829 n^{2} + 457516686514335608602253774311468535805744412734953959062 n + 9570356081569624835059304561293878608014288061205027854760\right) a{\left(n + 147 \right)}}{4096817560246873448448 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(12536287735658303480934123514178734939397582 n^{7} + 1620718444115689549648020299671603126123264249 n^{6} + 89531841067770361041328799800616321725287448367 n^{5} + 2739869901433207201794612870629594814418906965175 n^{4} + 50167143786221028452056434516535906319192384630183 n^{3} + 549621721303249189657069828280430358464761479786936 n^{2} + 3336170274244967969685533788395999939862749908823348 n + 8655051432652398882636563634140967182652567147819120\right) a{\left(n + 15 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(81276289683565349665002787794883108067095656 n^{7} + 10797970599992870953923779254607940028476467941 n^{6} + 613607833727356993238909618543482312518748489239 n^{5} + 19335797372891554349051305149449506709727654271255 n^{4} + 364934906866277804683371068480079878588494415298429 n^{3} + 4125498947795090692068508277820329472786109745886724 n^{2} + 25866539522030587028740691002677741298456553379578436 n + 69391464486092961760551929511469734564084964146390480\right) a{\left(n + 16 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(232814771500037754232894844343060033610602271 n^{7} + 31607084627930011450406821263226012580740556774 n^{6} + 1835358863413769836342858029977419823905587794656 n^{5} + 59095397909223971667797706779868522585565273624070 n^{4} + 1139546470381225161215259339557696037751826974575829 n^{3} + 13160701824512689370830373721435734660758092341502176 n^{2} + 84292964023266771807802562402697099471093202412821224 n + 230984490405051077726214635672161326121059698359062120\right) a{\left(n + 17 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(335062664723240084659336807650138961195136603 n^{7} + 46060082622178409190573735641496901015034818634 n^{6} + 2703210686969261424368331047888152873694592795404 n^{5} + 87774752392703258216571157585471737110440083409310 n^{4} + 1702437970665807135994971984839463266065121033521877 n^{3} + 19715800782776768787121012768026317337381431056117016 n^{2} + 126175409102012387537034808298383406461642102153349796 n + 344040388979855684364742909959379324048352712824396880\right) a{\left(n + 18 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(425825767677936550276392947324994782932197774 n^{7} + 433812977079192678276625230587403702217253846671 n^{6} + 189405998898567951852616845870288645335749754059869 n^{5} + 45941987926850999344375750445779854764940966359090485 n^{4} + 6686124332469062770352863086031912821359750265881950521 n^{3} + 583831761632569300670353353227714631951400426869015792364 n^{2} + 28322124607050627409707234160655777442040935707326427972556 n + 588822632987208929493371452420850987794589516948089604517120\right) a{\left(n + 146 \right)}}{32774540481974987587584 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(1449825229153703437174633988766573354610882348 n^{7} + 198111247813424137768476752081666811268549552247 n^{6} + 11474819654943924993520796537161725628669678873651 n^{5} + 364259421262980324584889899791111050450320353956065 n^{4} + 6819610452182959939557087254273967649482577173456037 n^{3} + 74901480205175123518465188211614047652189470249924648 n^{2} + 443187316064177898761048962837755081858229590670124844 n + 1074609794567388676594353919626061243050296863279012560\right) a{\left(n + 19 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(6141626403001605500421069786981976051117401190 n^{7} + 6219481868694999513714196780147650670851976460829 n^{6} + 2699260336409585168409567837022559865643242642769792 n^{5} + 650817722777717714847810858617384846976474585166966455 n^{4} + 94150309039664074112279244356499338606209099850061358210 n^{3} + 8172066736632241728463553480552494986775863530284215941436 n^{2} + 394063376376263425159851041901298763062564982102849090431368 n + 8143666356699210188405444792068916543527364826442815712871040\right) a{\left(n + 145 \right)}}{65549080963949975175168 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(11713301964466033929747298371590353908338240585 n^{7} + 1508031084415078906018132326445792574439384914278 n^{6} + 79413867760733404514320440135788234404808031353936 n^{5} + 2151764706040197847477649001768837635281978285093630 n^{4} + 30111159667168765595474883403264416163995510329462915 n^{3} + 163315805238763483628852195512301885378045757289512652 n^{2} - 568785607294801484633911854445458725259608990596476396 n - 7491695926351226500831793884080369645144870985804265040\right) a{\left(n + 20 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(71453016438081026428370425916813974217409970351 n^{7} + 5749247300909116634713595639292719544608161035121 n^{6} - 3404461614420175018301362440706165489623167568419 n^{5} - 15608789794782728478577420117186057589231820875595785 n^{4} - 718691854734676331272226522183450870884814329885108436 n^{3} - 14936927561427449579968807881438347612568497356491903176 n^{2} - 153438432156665677955420407805963423862094380798517650456 n - 633515837558272486781310017996848980006796783257420050400\right) a{\left(n + 21 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(78889891271607478899276172068934909000740616940 n^{7} + 79435251400685261073086095311361512933412133894344 n^{6} + 34278576326266728306681075143021132148843036455019863 n^{5} + 8217773205076708545141825710406988981461387408702425890 n^{4} + 1182037249532010305922842274241585091515523469004588599725 n^{3} + 102012600213160762493909340523537000553769650667407770153126 n^{2} + 4891007934986173220396221827642734716408714152062284391801472 n + 100498721984790720786558439926432582137403213728117597475417600\right) a{\left(n + 144 \right)}}{131098161927899950350336 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(147515510855152512610575973363686354935561080524 n^{7} + 147777482284450221239683083736276253067509874507036 n^{6} + 63444025391600771214317122191638861000418754205401528 n^{5} + 15131759784199137661103021438170706962652211173673131025 n^{4} + 2165350529866742296148442116024165715961012372780743245736 n^{3} + 185911867714684007930048632610857739601341234966280069222849 n^{2} + 8867525756029699649746141556619757192082395711584821455443302 n + 181263361199872739837434719657083468682299339632765920065082720\right) a{\left(n + 143 \right)}}{43699387309299983450112 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(204619676357796074556706541863672022895210726817 n^{7} + 65886728031809805121337393765850628815550559345399 n^{6} + 6984278457764406943697047593421563599399944386929845 n^{5} + 368094075114447141811283947724807523893526388680772925 n^{4} + 10946844507749505506027806277879784312103032327542190778 n^{3} + 187868229497939265350176906496747503060352235159958764596 n^{2} + 1743640959717491675563400571832592625517023139274374556520 n + 6800197483185847310284265193038528084485571791455621518880\right) a{\left(n + 22 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(3568120286111884861881882999768290019083606418422 n^{7} + 774992387772330845397091587204917214160451549000161 n^{6} + 69049673330005174527774132329886265740174222178032005 n^{5} + 3318955658598877789214158633926487014298776989560410595 n^{4} + 93729227170288901840579959386281709028311681953667721793 n^{3} + 1563405743149270113360056085043938702257830809508120319164 n^{2} + 14311907364703881219726914853416830081953684745323789648180 n + 55605389180648091905187179396916085597991281810697273153040\right) a{\left(n + 23 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(7912222218176766749041175276363796274040499145938 n^{7} + 7915533454758574017279955477703025457297086361877299 n^{6} + 3392784624196491064874570500879984489193938020205547844 n^{5} + 807672416943518293015800899622943058830469610531311529895 n^{4} + 115330667769063848917911355657348627168362404168289559977762 n^{3} + 9878448642609364025005262875361085607685920036654481656377586 n^{2} + 469944881965112801318248579000018329421590926821239846366621276 n + 9578963095284108682666411115846977399725185829149666055186218880\right) a{\left(n + 141 \right)}}{149826470774742800400384 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(8273680524031872778323083576511999502688228252558 n^{7} + 8258576001985942833135434953285385218566063922909135 n^{6} + 3532688613934742161636494780379473951131466856811583305 n^{5} + 839467721986943211856537394400478561393046067404746712875 n^{4} + 119681012340354224017109937855046124491507608421864206497597 n^{3} + 10236924596406785021216203159494299821613177105060510399511130 n^{2} + 486422188571588264950847816598288201315502918806043438961038920 n + 9904965438418490094221377655930928255200881636086452231354097360\right) a{\left(n + 142 \right)}}{524392647711599801401344 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(13727523792070384807381759067178707198951243124416 n^{7} + 2815254296175812351780165300576129390189206998624461 n^{6} + 242970876737657303359571870026564288343352488237826572 n^{5} + 11491293079670226097228507931113345280655869767471426025 n^{4} + 322640209436438666780585932540102212205985912861415081404 n^{3} + 5389458072701951902396797465187478900182717970619289798394 n^{2} + 49672008143165832383188602700706928032821968408848451569568 n + 195086503980154898775989824363311003413247089567031114763560\right) a{\left(n + 24 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(43149194795102277677591318314440563722582806318892 n^{7} + 54548259586861267197745194890644322247298543312946152 n^{6} + 28022034127227655161387737483511088462957411164280056739 n^{5} + 7722312055130514221650935729202419846785854885214948551840 n^{4} + 1245617739646407857181717917948419202286343656404929381709113 n^{3} + 118345290660413231126342902387186944874511709583470796038515908 n^{2} + 6157896248620699475234963987944290282530803181579237633055786636 n + 135763698482496313229811363779191547519298011617716602842300326960\right) a{\left(n + 140 \right)}}{2097570590846399205605376 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(165535285017723881772940925593535548802333537874325 n^{7} + 33613998576893503874403914814115730245360992906570414 n^{6} + 2896569073513690528260622274090342626484774374536895630 n^{5} + 137594716773833153442492112922267628045193857543260442630 n^{4} + 3897328047125227092669831650358951695553759750952883835625 n^{3} + 65899221993557312204125402556879878926786734459619934875156 n^{2} + 616452456529189767017419582274493242530153797370526171867340 n + 2462724096077058077767081509613367007073608043184379787813680\right) a{\left(n + 25 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(872812699650742582860501245231844908897728621531986 n^{7} + 178250626022429027048386648974759809015615487672844951 n^{6} + 15510912705844402488226046901228551174675135468350318941 n^{5} + 746377790036556898959697057856274639155184114826449858445 n^{4} + 21469049555337471671981176173017390070264457233032510058789 n^{3} + 369407304633893297489971698407500884917401201888071077138644 n^{2} + 3522514751000373335801594323723239504750989477340603022499604 n + 14366144969176375982023548095339112380350811239777967294547600\right) a{\left(n + 26 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(1668725900441039153191770099644697691096739767639424 n^{7} + 1580503419615741649101027863823850570616835737424148594 n^{6} + 641188969577452933886682368028053898726980503813470803183 n^{5} + 144427321415167526988398674556974905603196235516505868034650 n^{4} + 19507271086536503501820225110063702142502412373319215535512761 n^{3} + 1579843037007782859424443116903369459450852989142498372468460916 n^{2} + 71033498063420998962885336749856995648643529958793685416221835972 n + 1367804955224826482468667530819577806819796681706337838988307997360\right) a{\left(n + 139 \right)}}{1048785295423199602802688 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(4210035703685349765724868082158412384924932828327693 n^{7} + 870857467652479490202136763676257256446750635168257202 n^{6} + 76952718868001451779770854585923326062388264859176750682 n^{5} + 3768211074724191971590556180448872069212593476070636516190 n^{4} + 110498117771609532811564652466999711673391926519190550366437 n^{3} + 1941258882356533687221830987896278707714576967937095100724728 n^{2} + 18925982123269338265918669142328547193026812619737759801868908 n + 79014222921952727176022640610388600483190684221209006584719040\right) a{\left(n + 27 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(7060338718929332419046758233382367946691933185463394 n^{7} + 6717393357889088071232455585515868758004034259125720105 n^{6} + 2738663547300275329725207156007050048172881094424092356315 n^{5} + 620214832609115890448468286475479726381238279472668620908535 n^{4} + 84262340389078111396526139674852346077351680280263893927399231 n^{3} + 6867700030628561411794962960223599188935224696741391493943154360 n^{2} + 310921152102080730887674891560106324277765445956709526900134380140 n + 6031766316295030446532660174174332572988354324731733371760643904160\right) a{\left(n + 138 \right)}}{399537255399314134401024 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(19066260812478972074299468620118751545692187837943733 n^{7} + 4010922323637867532597571547116503064891542228050638417 n^{6} + 361162558988164955962447164973672486325844190552048521699 n^{5} + 18052657194123816295473245641859818697601481774941419514035 n^{4} + 541183435855837602135912448632122287691886810637441067334552 n^{3} + 9732967176888383906186647664941188858110491940001993095359748 n^{2} + 97258560448717119473495625355694316924720850315252679153811576 n + 416653811190298851832624848191748953583828306052613192370102960\right) a{\left(n + 28 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(33748086743506135478644331611560422174611833884089643 n^{7} + 7585165360668271693512363517115497579109791353299675875 n^{6} + 732863434801951781047795659474523732203416141572109368351 n^{5} + 39457501150748921322824877362702901550545748573622599243805 n^{4} + 1278489184230019057940453438308687763012296703682156027312382 n^{3} + 24928798407409094297840507629325263423923664098108150851806380 n^{2} + 270821212155842843986132206969435847756962160226877247454643764 n + 1264416518080052654879920416776285274932335336634204808662920440\right) a{\left(n + 31 \right)}}{26184073569849451112105508864 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(82544713646455837154741611069407097923158603201411621 n^{7} + 17711322228769850911020851195329641589929170997603952913 n^{6} + 1629419971221097699122026710615582481971177357189905311609 n^{5} + 83340410466056538615367792052656395072360557675015033097575 n^{4} + 2559993505074203256644206833849382459013323669162369480550594 n^{3} + 47234702339518616792974166603590294959990564687990603886049792 n^{2} + 484798105220506532007623066113442830986203343798046178870463816 n + 2135407518333879649192956183341415330785865873213663135767954160\right) a{\left(n + 29 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(346120881804360185459534311116713762038702325791659728 n^{7} + 75931640890589537736829358630991325033005424195717154885 n^{6} + 7152732248025460331207480217058781532627625030857608145707 n^{5} + 375089080208455611395990802931949944744131354514962613433735 n^{4} + 11827002760657958517080183598006556706410348296206036026240097 n^{3} + 224243528187119812674434161486167673369490277185230879191118580 n^{2} + 2367337899087699912175418595012678594407394159429978768625137588 n + 10734772231119005825543199079733027492282808114243201280273767120\right) a{\left(n + 30 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(2270605470817699922835508026543784973209682027922638354 n^{7} + 2152990812110526023266161593522890058689012817040390404351 n^{6} + 874859423222187131120532526620605713088770262577894105580352 n^{5} + 197484885220591726496376483412115934866944776142388057696405705 n^{4} + 26745596948891828929777282384487484583863217588782714789613905446 n^{3} + 2173167320405236212401960856808018017904812684206603309026983967664 n^{2} + 98091708127947335949710208325162743681384410390182172622225525348048 n + 1897426584201999988353531222606428046385134005816168692050187648594560\right) a{\left(n + 137 \right)}}{16780564726771193644843008 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(5688104044941154345306857894461853538638767229543487955 n^{7} + 1311808585191669958615553188702538018846716130171181680266 n^{6} + 130139679686759698231313742186183707226749394948307099973792 n^{5} + 7198540608902935942389672329980487687482125700702981687593550 n^{4} + 239739534529521901497058468863961609089343061273129227172739665 n^{3} + 4806454194583848386788053827740867932883721417524032971529396784 n^{2} + 53702675527446465082658135221104700890582219102752164323329215188 n + 257905727876521067035287206604305075514677414023770708231574494000\right) a{\left(n + 32 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(12242528111626894591743559791378386471907773976235866026 n^{7} + 2977646666972614503486163409424009022570064186288136320773 n^{6} + 311519641273555580306287921366222243035889821461293970643797 n^{5} + 18167780841456788723560005846968516250318457194837558819124915 n^{4} + 637717388444934093031600590855550689741581957913084340295788709 n^{3} + 13469207367737447303026377719341330570333893051511356221194508152 n^{2} + 158451123347188827155595221653238217546726492553708535887622115948 n + 800682991194937234481021752006021213691688344432676737886575805840\right) a{\left(n + 34 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(22348931495830779921355325678975790850275379236327820622 n^{7} + 5293062559586661192825608708920027229489709751669364574927 n^{6} + 539355929126450560695094301339667960191544251334393440755859 n^{5} + 30646583053343478659980138811264342314960373964979898026211625 n^{4} + 1048466755930395123591215827527206480663396743303776050720344883 n^{3} + 21591785848513267392513006395257811023911079182150067241852669688 n^{2} + 247770375868496100177018182282824211964776894275705639737156793116 n + 1221853165152525254786625686859974102509178762847565404226551985920\right) a{\left(n + 33 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(28988927006417018949962898304444529524667219212663775300 n^{7} + 27342148987486871940210512371507235480738936024558448532984 n^{6} + 11051998207691124406945802917408498685957471417836479758849813 n^{5} + 2481765563861375671464184654038207642139774975982424891472171450 n^{4} + 334361369595136887351115039806128060552651046228810609908130969095 n^{3} + 27027549838245495857486746869099405883748821333861061826614692109206 n^{2} + 1213692273084721090306668588975933206429983385552295389649169075650552 n + 23357017572293935638187468431576141254208161300108324869118228577587520\right) a{\left(n + 136 \right)}}{33561129453542387289686016 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(163537032453792749781868783373699707480505194208879521908 n^{7} + 153313431348929296201931938115924272769382448639447530661052 n^{6} + 61596768004661036494868652503656777209165017746608964333100580 n^{5} + 13748442383300035381019993354702312059854243705930269381798919935 n^{4} + 1841156126593314173179958750519131209991443820843859713944077523372 n^{3} + 147934416379424550472788015202432165828310122722942147724664852550863 n^{2} + 6603367936810498557832256817839474810127222317688310840503302758784370 n + 126320866635067920698479327432416053301746734689660166947901713653484240\right) a{\left(n + 135 \right)}}{33561129453542387289686016 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(319652732452168553402273978578726469427060075466244206931 n^{7} + 79778547119103111844095190145832292551029420707542296677806 n^{6} + 8559697135580737341436320974668916781935325256163747044333778 n^{5} + 511657178678623974825808057249619587335961204209947947919497110 n^{4} + 18397037673587128925116786101477263501169806342654450861686473119 n^{3} + 397777319837233717133889161944935016527891871909881739148588091924 n^{2} + 4787494257030952522603270433971517528698158971718163563860161107972 n + 24735933018567950521671082450451532197937388833888444911619291224880\right) a{\left(n + 35 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(385937490330219755706448771971376315840421036445912115327 n^{7} + 98693805081975388320115622155705679012301113318932471852238 n^{6} + 10841914986289591566069177584750491441474394126185075198299682 n^{5} + 663061391528976692822668083098482484701913723695907233593197790 n^{4} + 24374740685759192546268822210024530402719605368198074164923118003 n^{3} + 538454098647257496734016372197905333734988899902432678205210761692 n^{2} + 6616711423396225875770929335436872792935036127931438371776922471028 n + 34882355699700557662118306318183437073312292910296389860520121529200\right) a{\left(n + 36 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(3348172642157127577998093457436251815210824037399047666634 n^{7} + 3118581805422652417551173385099726792718279196502910580718685 n^{6} + 1244868824642951142432736864395825517974998457594426986763900579 n^{5} + 276065066837514883604270787966043289264337902110555761503221813525 n^{4} + 36731990842841515498174275659309349651704152513687949890858847088591 n^{3} + 2932395936505003083676770318571805271636314834863185448615014820722130 n^{2} + 130053517776022202749356193521135458672988485758353716500038924986199216 n + 2471944130930392452591161091893429158160580834672445903910545310348491920\right) a{\left(n + 134 \right)}}{134244517814169549158744064 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(4073891290866626338335880372978215281579168204205889354480 n^{7} + 1065412183695209287113985128803935905210355371752889538500719 n^{6} + 119599503919977823624057916681545896763873039866124658081899249 n^{5} + 7468753769535423483825662721954557175946567446217552490490949085 n^{4} + 280153548989011185774274182736983156420721478510919616062964598035 n^{3} + 6310617839885738431425279559164198904380676290960455199701828314436 n^{2} + 79022548824160521708710187197196279319883869415133822712149722005116 n + 424257996206489873910133399197961883117006540596781361887900022233520\right) a{\left(n + 37 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(13152447859902640802278669524259478967593310768287797641460 n^{7} + 12084292298532468118343584797110151362134317205718974072676504 n^{6} + 4758356639722669861681430477154037397831826316972321718203768685 n^{5} + 1040921989750657240464765922312821900925988012078358792753369322820 n^{4} + 136624494925394086610280556709024633928848342196359186962140958246215 n^{3} + 10759402613798947227829363467788561111691663733667589860309253695496656 n^{2} + 470731441767803755023508890495822495427101447556428287297790657282898860 n + 8826315454373225947635830947765521051298124056725524239718634451691743440\right) a{\left(n + 132 \right)}}{25570384345556104601665536 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(13953046548605173563314545703018182305570225872272089504403 n^{7} + 3724363553083278476086717530429265793095747925810769094254874 n^{6} + 426410735969309940428782378228694139348046417634701422439651150 n^{5} + 27140719036695778709025094817610950511848605274403602973652021210 n^{4} + 1036986373286534020352271230422989030136136158724315720637426511627 n^{3} + 23779286397555629328588363584727485530828688656582571871619281259636 n^{2} + 302962332964957245184274892337406565810258933206668940607801826660860 n + 1654055563681373512346375250108086289801006056747215332941362178211840\right) a{\left(n + 38 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(23322538435756413506882104039367861962622835563479437786134 n^{7} + 6343854906449906835066703706532492012498153465589347880113347 n^{6} + 739746298747550660854904598377246488893216014777357253719494667 n^{5} + 47930521518757003914006721627646749906946652539415868417591777835 n^{4} + 1863393626179683549188302493831517895072667507930126372309341367411 n^{3} + 43460601044164205671164401886557134568760253790238755046421037449418 n^{2} + 562980207731097339960445239630636309228572537751695057150039596125348 n + 3124059613968398079128880260494681953368597312825965666140660877354440\right) a{\left(n + 39 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(31551113401160301081812817780657686482107986626294774225034 n^{7} + 29190186362441920979115171827746640177407179657811716710900927 n^{6} + 11573867941725675470988944791212804768848223377831867270782637132 n^{5} + 2549434949177286965000227159637167698507948603565490381957269095215 n^{4} + 336943327496979064141883252811549424892974072926382421257684863151586 n^{3} + 26718821525490979718313980216389667249501372186198355899187966577500278 n^{2} + 1177067843902895813533682662313015176131363537829922467303764622344767748 n + 22223127081941972605623056859522415076986846285786068355955251522078272000\right) a{\left(n + 133 \right)}}{268489035628339098317488128 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(152599094055164153137942881105133143476288013600398892847581 n^{7} + 42272377075798910047907648273522384472635491945969291182661112 n^{6} + 5018613992932209117757974539706127784647922421719137010096782668 n^{5} + 330986075368892956253055290174224548309509692012752689177476882460 n^{4} + 13095635376768202218385755326587313058006616904010587854736631117939 n^{3} + 310812672523290212424294864506831501548015642729965544649870987777708 n^{2} + 4096967428137795526044525913823397256800214032662332508134250594425572 n + 23134984172338852077665278748038244306005272977276395009761671565345360\right) a{\left(n + 40 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(188368771750582041934222562957063038980331638294321638107564 n^{7} + 171851032280575649593957779716270878127561675216329257721942222 n^{6} + 67192031771347267706640051172984224481665152295455072443113189579 n^{5} + 14595201252939268249387155401513807021703332487783539207437682235455 n^{4} + 1902185469961690991477386745528418722823941938080444339799874081119461 n^{3} + 148746277686749387079591305844676910009561729778762162902285563185898893 n^{2} + 6461987128756013950739498906020439437103490226215644071936778045891746286 n + 120311888227385219948807444232642061828864652759955715933191293051273601960\right) a{\left(n + 131 \right)}}{89496345209446366105829376 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(489634683648463567981051396816219476587547156269091658661073 n^{7} + 138245498130397380202908937859040393145090323690222414857318899 n^{6} + 16729476533692768998071270055667434614511474299259791709117808821 n^{5} + 1124818547412439912034844525125493152950136750802588936296474577985 n^{4} + 45382257301737451929818253172143226757723126891879614371241490984802 n^{3} + 1098761016531382692264466765728855598224737240305547598330617894137996 n^{2} + 14781523419783378628991079418208653209404382758911903704105854450774664 n + 85238879604229251139506431563436444272026047484183090401385039067154400\right) a{\left(n + 41 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(1544635965808449382324935850529005080077194014313452429731053 n^{7} + 445601320567540759836787593482823143418890273223569373852369106 n^{6} + 55125512655726903355363186071230312325658333070724393343298715754 n^{5} + 3791523594765106480028659021472289630586762668330800062594590369970 n^{4} + 156610659355661566253599077669744974750241379871129705058474058604077 n^{3} + 3885489417429121086698195326964331168483400362691374152707193538548644 n^{2} + 53621139127011456066086577535718891546517577179404404052349168468065076 n + 317586952252969293582948384301258576607577791924905013504481362833916160\right) a{\left(n + 42 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(2127477617396058730328181747638326646278812648799239724912047 n^{7} + 649082580887686734574786463505569684363321940534566113047866350 n^{6} + 85109123642076754283616464578593378845267851563430905348535633530 n^{5} + 6219123437718489284775268712673723025990659499475151540510045964510 n^{4} + 273593839150098852640096794652277714569227255724926288599411329410123 n^{3} + 7248020415845832490886388131271998041051863555271993505495365664647180 n^{2} + 107088167552404822880344767286953501505520174852621544194925852085521780 n + 680842526645537117557382227922253745210985291301026662487476850755636560\right) a{\left(n + 44 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(2405062332614392369000582707880318329802728098806204157636375 n^{7} + 711755031235875071972400592231067312403788758155477504190642081 n^{6} + 90417611830415396178877749880701934328354651104696763032849547456 n^{5} + 6393137670287874168051222405818370955223203929961468496166445302265 n^{4} + 271803730793485936533413094011079057491019451743035876151678445006205 n^{3} + 6950169279465013780571542335367888012076663153933078577835726765056514 n^{2} + 98998031788274764475314445872446439757236849478488055767275176735907744 n + 606117214779453646310846231212769605175428655669637110580009891898942080\right) a{\left(n + 43 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(4344332938034309815574790282588734071919972262793729132591692 n^{7} + 3934954179583762327677651281165904571683527569736238458730484202 n^{6} + 1527494456828865594725374869964510606999520827101313578727117869459 n^{5} + 329417972898732539193842325636602800874137488775610480883210970647320 n^{4} + 42625196778213044233297667116756572260984784169106326304804742128438913 n^{3} + 3309306419766444699501643986615486049127964454804213562361909911674418798 n^{2} + 142736587293472872689738710189452340719592376932458512578031457995392696296 n + 2638500115718155712010488048957003640553971080281258857265442182579398741360\right) a{\left(n + 130 \right)}}{536978071256678196634976256 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(31494859205664245196251753276619955376562727977530957295425986 n^{7} + 28319010677556122453348419081393387223186990644380495088821164667 n^{6} + 10912913081321090154826966354172437300879303033418373757874144379199 n^{5} + 2336317319788176117510003513144870837922397435115058600034249674478985 n^{4} + 300106395149837397250076624781462738065846288707021006051367437655902819 n^{3} + 23129752273272011615127279653506704728455327809649815271583216146903755108 n^{2} + 990365007301214665797646788893877658617314200417916056233073363388562420036 n + 18173723113916145535716747291400544477620084996136497365561656208643316258400\right) a{\left(n + 129 \right)}}{1073956142513356393269952512 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(46345336468485181532854537230136311346265483867663876914793837 n^{7} + 14643627019166220246921712503380654441968935209713436805248673345 n^{6} + 1990319094560726605318832437848015747210975697624064083281316715093 n^{5} + 150875685587003551304280341440033028629016089318888026785256323521095 n^{4} + 6890152771764217386201837342461681404469178415790526167488767168664478 n^{3} + 189581503159778494654240977499775020828917395066912140518102399836134320 n^{2} + 2910163992127968824643034762945489505818583002511221473825359197032934152 n + 19225839362555095478799899117664408862349230383409871216130999572341307760\right) a{\left(n + 45 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(146890269416138032080324416348449627539711078200152709614898837 n^{7} + 48175684717011012954587582217591636255090352317414515297270093990 n^{6} + 6797197183634673609170345794231563858455471000924529880403450199806 n^{5} + 534825522827700705541946764325071238582533694129499037242198306301190 n^{4} + 25344669914721706510220446943960959394784654242817614013017003639489033 n^{3} + 723305429112185169304974309194341326250434163106709406131242110053899420 n^{2} + 11509157009369102977738016630401241926576724127149593852182472808168166924 n + 78755572309699372784799140865914606958373715242791528868009093906200897360\right) a{\left(n + 46 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(216059809916040897665429382870995510997330083835464069655664248 n^{7} + 192833770614222674371635859567322379153223696382533244700586740988 n^{6} + 73759359375026114763226604070116975845444455726790843413794659688169 n^{5} + 15674020775592341428860776576205690304016241410720158179185819219660020 n^{4} + 1998465774980290337929586087259640803675509303152041859886468371951473867 n^{3} + 152885411737575713637738719409820275301736934325244310662874646080831393712 n^{2} + 6497775151353098653698473770935587012280707852858843488491463244005237400916 n + 118355474319345260536824508806694736471826580884311532343653338593919884447680\right) a{\left(n + 128 \right)}}{2147912285026712786539905024 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(351789478703813542300379931822996419080974767347148299418064456 n^{7} + 311608450067306226501977392896619158036435814004702330359566270850 n^{6} + 118293592379877994313527374128862706944629399670472013858988413640123 n^{5} + 24948424778317933399159969237459698201319069491810227883253159104721855 n^{4} + 3157030139771244355128509302667774363784440705767628801951662095974837949 n^{3} + 239700000297447642144870722636226950451156275543553081818100598015219796905 n^{2} + 10110841746299070307016334302577799395244033754470669420165795571606006438022 n + 182781527269794746225034500136157718565392865099539488554841813027289210896800\right) a{\left(n + 127 \right)}}{1073956142513356393269952512 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(479206780106712635890421617755301935775060669294281503261120287 n^{7} + 162884672438482989374863696450983301188472716425611913567435161289 n^{6} + 23799128198722282140610789674999612549482249726725062421967950906567 n^{5} + 1937440959767392711727313137757731468121275988562638687435398530321295 n^{4} + 94897287290206110645094496981319650565917366504415706602794888904839338 n^{3} + 2796244130296850581610808732740123579470378487296134500315178383568696416 n^{2} + 45887995007848330141219671316162700929516764068835419386010494325700030888 n + 323479199207722822690673217736110092738180781254941090456614878219933744880\right) a{\left(n + 47 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(806419527479865980541827331477013059125928334525671107873174811 n^{7} + 282623429167483750179527866864778081500829339651975184787290117440 n^{6} + 42527581931353881758762459454478798129902268113954257135074042071297 n^{5} + 3561341652377936715607553306794477182002408301177418993480711744007540 n^{4} + 179232890281961936782268312527982927469010621512882060110353864442445744 n^{3} + 5420470573530911869563738708197778363739788325858655921998229960561523980 n^{2} + 91201058666436170253608742840296158489077365596575414140131258898151597468 n + 658495990442115238965822657518119858876859115655943800160772316171259163480\right) a{\left(n + 48 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(1091156990764803435570282832969913237044982220405497554837480760 n^{7} + 959119961574997033174793486737800113202483179698370106084558626854 n^{6} + 361314095308724153396358288174607262891337669983085385888002267758219 n^{5} + 75618396021742094335170158595206941408510552073484677287035819695709280 n^{4} + 9495642895884573236365854003073529489594750640068731503124873230868132910 n^{3} + 715444022857934805205181506660946171622192359961001924637661979446428429671 n^{2} + 29947293668268102917194651162961254145777168399826592282790696122937105494746 n + 537236951208169174974335582957974161344475305330036909601240557615085154399320\right) a{\left(n + 126 \right)}}{1073956142513356393269952512 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(2777286521533975942606846374060503702861852100627009152331276866 n^{7} + 996930283112893742694938546884763527326598795347652711523385080181 n^{6} + 153498060807153461514040154077022367726171767513737452763596561164180 n^{5} + 13140953002258353727745721644723351028786977451954386046636041429203665 n^{4} + 675531909088076430240223160618276240531781410569763975170076844618194834 n^{3} + 20851799317999839784910210567190462705932846391440849154151988554588329534 n^{2} + 357831277746537984102914192722950376220346384950819589983021609847050481660 n + 2633461388915106046575313828972122622776557575191432007967302154231545726560\right) a{\left(n + 49 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(6469930639171381139755372299612778541790282899382023860357575088 n^{7} + 5642613960499324026086026362982131944042834061348117812660681962978 n^{6} + 2109055610633252735432577530183982252634299646423387608443452133051113 n^{5} + 437952488397628293917040396278884060853439937582648809191484940397797690 n^{4} + 54565861012648073946618593550285877857929547265052996701698090844061116477 n^{3} + 4079153892095855090374599837102461864933344204019311420390143485317088620402 n^{2} + 169414466150056390023778831405117746483432936858936526881905093460869058956772 n + 3015490418514827040352403307727841531989678975892836894812266811475781519669640\right) a{\left(n + 125 \right)}}{2147912285026712786539905024 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(12268791760882282193323663924378299163952002994394220127360474000 n^{7} + 10614656980769794736368694210052772326669578984097889093879847076459 n^{6} + 3935843660969710527671583137871816910651727358085309836926177994575310 n^{5} + 810777552717052142937731028090717690866980053734583872642298168613263805 n^{4} + 100212377798665636065977753363502959716480841808054916696132610300583379410 n^{3} + 7431847799318272190940716567523978496416680147129631568541337169973400943016 n^{2} + 306199372067570213449185187289929822228709015312622003081342412320724392107560 n + 5406790824989855068296387377777936867213485679848037772736007020049355403172880\right) a{\left(n + 124 \right)}}{1431941523351141857693270016 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(19280371049171731030576262656868635665165684920171494667508421328 n^{7} + 7047223942385279846235936182369915040658911896519958974001210367025 n^{6} + 1104286552398406543724254738613532254771164357017712248461112286903859 n^{5} + 96165653434084588044615032235522957346588631232281504194243277259800855 n^{4} + 5026470097389242935062174519611762786994997664525360775482186912040797297 n^{3} + 157694122572740050719130369902629976736308576449022660717671616811004454080 n^{2} + 2749512799903202456722161411826601991400465502820300534349833959104135346196 n + 20553225180360018738922011293525251946112455439163537046993670501217432871520\right) a{\left(n + 50 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(38187094514934845999381372292142567072788431718387704905660518376 n^{7} + 32495872230407176722572190657035625992436853047470771386462776059603 n^{6} + 11851378725169568552282547192146491997706240927142360935135385291950232 n^{5} + 2401280815902481320487398050864319921752137595807493085614442295567977910 n^{4} + 291926954810939625248640872319785736248783764465946530933909097022949484194 n^{3} + 21294263952996752547535854983883528620007345884488317708373419869500767298247 n^{2} + 862947792864261864053378189439011448464323030454943110494073721285021898267758 n + 14987721083796056744952529270731792443848974256451028382231566359413491026879280\right) a{\left(n + 122 \right)}}{613689224293346510439972864 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(66356862935210546363094377664254496129581633156243896292347879736 n^{7} + 24601431172415968889177080693117714941610560569304466625428082808807 n^{6} + 3909451150567062370999498729783292428709333347895073979099732982269565 n^{5} + 345202841869742602266619514453092474698044769784719129798196618638556485 n^{4} + 18292598877081220742491129340686848473473374472327133355819663176305899239 n^{3} + 581744448474097387190732798193511822229041099441930552637198501593195413108 n^{2} + 10280927861428614165905496829227607263756031987242616199734640265678599890740 n + 77889791696966623304598615583423660894081474823920102398661464063070655643360\right) a{\left(n + 51 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(67233966089746211351416406556426159888610360241073411583655460252 n^{7} + 57694970292891284456776893525104741923861873394418109256542822776752 n^{6} + 21218545802067793799714655074090257603152686462533701590915660434917273 n^{5} + 4335368475719188512661838704453406528116050549431820526833065335879107310 n^{4} + 531487338166902925390610646713403320763329630153153150949666879022271809903 n^{3} + 39094562237285788584507894685532341556230918046385104350619498151789826114758 n^{2} + 1597616624682144706626163167401663329164977322341220202065776487774405436976192 n + 27980618339336142091750786303623666998982702574645949105892248201267950322760480\right) a{\left(n + 123 \right)}}{2863883046702283715386540032 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(223408976023272262198438121769325860889593142714571367716567410174 n^{7} + 83846043185517278250896246806470899736730750425438557937668387783739 n^{6} + 13487894941405570395078427847393102531667620199746967500042336238478075 n^{5} + 1205614368616114494300389303766486881055062331759037490557853048640934785 n^{4} + 64671952529173200781894567547464663215200748338112513795110011458166724491 n^{3} + 2082006347285503410963144220544955874806452092567220240441652271929878021916 n^{2} + 37247440038822420530909248892636683810770068945871321993774595768632155104260 n + 285671407366460670146136266452131137924098898173565906642162985851950469303520\right) a{\left(n + 52 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(431631515525114309054620242620810825692183215342923251693112631921 n^{7} + 361003283142035099154150235603897578652485102265015428136915544253710 n^{6} + 129401335595812093266529381502372884230862423065342090166410621010268688 n^{5} + 25769161216518865200826356814870914872914856751650371759998456894301150505 n^{4} + 3079069635226465929022131086897609469670692611879310313753225607848668447144 n^{3} + 220747846661735402599612126940079879103574739352199392256217382379251798510955 n^{2} + 8792400315575109043598320311827831126605638772805759275221364610749836813912267 n + 150088768152579636365868359628257394093997683921728884777870704724879834473253650\right) a{\left(n + 120 \right)}}{1073956142513356393269952512 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(728880881286699351504448408460527601511324843100154401057438529715 n^{7} + 276726768106028350065408106573970419349536783804708206787117852986631 n^{6} + 45034866511879433434158146279915539954458417772617321932288019604690809 n^{5} + 4072588250532676028358030368049897559759599525373177346188110885350017225 n^{4} + 221032043255478808654476830107861639022911117597818284987484407434915895220 n^{3} + 7199750144737372695173369441543642952354575312157597918032997516441182654464 n^{2} + 130330647947539398605785910427161512204885975522766296900890107707703697615696 n + 1011464148467436952512308248595135579062079426683483418319357161522020364856240\right) a{\left(n + 53 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(1376283522732524525874384700120099761373981677434266402971179794816 n^{7} + 1161180828712576473576640351371158225921294609358333486866379912044294 n^{6} + 419876281716433468940897641562979250952682155693637354188296210357542247 n^{5} + 84348365909303807549204045467973007460498508824328442134731305513034693640 n^{4} + 10166925237388442419553446795025708396934418214782239844987748561028004075189 n^{3} + 735292670551374657139939450583971328996909907681753691102968205588636346969486 n^{2} + 29543691692400913018645317117268374979989196950438292207737279195667028738329728 n + 508743589367335736557970736406480619400075026468042112118834223693335974958252080\right) a{\left(n + 121 \right)}}{8591649140106851146159620096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(2290814946561873471928418451577531931525428750210573784349088752223 n^{7} + 879875821862120893897523369418803864346266301715072614513938239874123 n^{6} + 144869792940457824393716077291109603604119939719956789558820439386395523 n^{5} + 13254936200543116948744039464127101864738849502598254923222709432560259565 n^{4} + 727876956850630152400316860204766602443573906742954659388115350431932218702 n^{3} + 23990077990063217105285702211474044302797980581683624169882656378956543705312 n^{2} + 439427433432095644207471795985943941260941945493610011592995141674618808879512 n + 3450895211669276766818036725886894149781752147984648504329190408725892873972560\right) a{\left(n + 54 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(6912659753984130039470992716377427066186219970522783348217167138061 n^{7} + 2687093133194951470535506663004557008858562083822115940689250868333649 n^{6} + 447772854417827571879682747301292604476554370768250239498263163771453713 n^{5} + 41465451673008850447527749011769902055533743539726541481616739426592162255 n^{4} + 2304644799317106222291065857173256856559244439765847073308138164931981147794 n^{3} + 76881514510405876055528822304509647198814618645358182732149421746163364923296 n^{2} + 1425369727995899079370972000899335070421333139054680999256962848243662153719872 n + 11329932022179895820119486115977410937027132169664022051121871303809682902293440\right) a{\left(n + 55 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(8464119209777226763187901993583972668809856025023404272351958290763 n^{7} + 7016597691109760344340303755770414846991690616483011846667302391546534 n^{6} + 2492875157441494964941953656996836352738250902922805709051069204336474819 n^{5} + 492048545938501526179810096260010128540133820521701710064000404750179341410 n^{4} + 58273706309004900671736489348599673021739173246156198226766163530103868731902 n^{3} + 4140898955836154301517143870914872575692666437294782296533777573551648799576016 n^{2} + 163474573407093398081397406238449770295760910248691172814288647172859448863178356 n + 2765891482659388253063429057462274419285539284545610499606710920950045982064962400\right) a{\left(n + 119 \right)}}{8591649140106851146159620096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(9996736806739653591716135882420804578256490069096702492282989700392 n^{7} + 3934745647789271667653409439182979784319203639073320830089587729905277 n^{6} + 663919712514662126416757004785005936487542881973830041533623307871874575 n^{5} + 62254295826861293899522504284245394210148464189424439083997362653458468495 n^{4} + 3503578137118979135093137957007490497053623148923264606593414582169447534653 n^{3} + 118345868605270642144058353366311333103385898477727730735741261478844640563388 n^{2} + 2221669720795327315079578052345615680150763720105804337116845319560535989511820 n + 17881200613334051036424350077765993227746481203071716571180557528350048904689040\right) a{\left(n + 56 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(20290040949985583605184142392541520102739217622112662936457208939823 n^{7} + 16670002338528691260975604361366872480674806679123733537513126583826644 n^{6} + 5869708431486821368206069197582446853248709976082014792772017531085946938 n^{5} + 1148232546092510579546654206121906704115698852103142298656053323408650872930 n^{4} + 134771924810687161653547648494223500023450521644209945709385603273086098842597 n^{3} + 9491291398513854060027235792231668038777429285804477184667915594424750865154676 n^{2} + 371350290387129275497497832550432889178106191417964752560649310168877973095945192 n + 6226881118846509644447471749633568491178554730024181335236815382956885629430024480\right) a{\left(n + 118 \right)}}{8591649140106851146159620096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(55390274771538623961256935199917650651919899624035804904185335635515 n^{7} + 22086286774307178070125989148391103404707202361754480778670096760520154 n^{6} + 3775275429385953599666646929702598216464768980319756866814778576962046424 n^{5} + 358611599097952438954083851620188275266276702757460523998247417179058813370 n^{4} + 20444778228367201737353691631482001720966673261619674942751754047414135424465 n^{3} + 699571074062305055302530959048935924884867281625148566809965424719072221353876 n^{2} + 13303256973357768486026026640319105951302358964824660216176485715866868561718516 n + 108459022480142958054069152291926081530585561893468549119567357083931197055129440\right) a{\left(n + 57 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(95084364136609862417950474347843359492914271106114899808758086904910 n^{7} + 77419904277815788333439024687894830195074509804431577443764964390885348 n^{6} + 27016107963362717052688651314769522642412896970512544069621316624257091786 n^{5} + 5237498217445085390446386111826962209779697969307484066413814441456493049925 n^{4} + 609227840782969121751928861229003879248888194781989428716924042713809241753510 n^{3} + 42519718870926583129362646716965062752718393332205590886878609836779159633259587 n^{2} + 1648663794507739985205962483401815345377756139118989036042102982522202844889706214 n + 27396851116562712881739517220872056505217180145251270617605635054118260099515801560\right) a{\left(n + 117 \right)}}{17183298280213702292319240192 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(146984117145460616522572003759644372934726124046798279543354315425337 n^{7} + 59398357058519496207828794600016136319977028363197269529619214546116018 n^{6} + 10289814700712940744488185943561603599500861729900374363524609177911511188 n^{5} + 990562097143135020662793564337447167898954218542037595771054555707691347290 n^{4} + 57230626524892944027132663639845033811229568804500052724806832890525822883063 n^{3} + 1984522293855444884766593104290700055169918750077673576391100952658887328608212 n^{2} + 38242706129960643836118670336476159912395354604037898559550752323964623785895532 n + 315944282810553169628313928914006006002994587873311532728941837033290210078438400\right) a{\left(n + 58 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(186867186603053631141237268565371746079455831277931959743496977758187 n^{7} + 76560432155732266510552596663748085041602628935258256322361902093678702 n^{6} + 13446072510514433242444175593833116128131337897044013322705460319480172760 n^{5} + 1312252322854648821028410526587349499098096659153685082255882740333844656370 n^{4} + 76860086243828258810114173313820775870262454462849531538695279255502643908893 n^{3} + 2701800352130916374855414170498748266699484542058583518079731113084335311349428 n^{2} + 52778643163237350456175828289727697378722038644266213711515379511278725676780420 n + 441996835600207257474799069924396554546084673108162051618163189822652375390294480\right) a{\left(n + 59 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(217361286690512350562001361852932859258423787195520936026101116866786 n^{7} + 175395321482306258522433407190359682087094261779602460105862609457244082 n^{6} + 60656680947594949237637654759826780479583507600553461058544681764756361528 n^{5} + 11653823128347724577443734545429687407184341794691995198192725596641146773645 n^{4} + 1343417902834201525144466522839413287724779901952662933009603937927666329024404 n^{3} + 92919486479002101020218991599221966961024309133851967030579154478818412887062353 n^{2} + 3570521937298034290916937859596806169320871860940333038162476350277412663103074322 n + 58800578017556803386199959179248401910310801727733748560045677806053177595320967400\right) a{\left(n + 116 \right)}}{17183298280213702292319240192 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(455583117678861848648216149451529591256362385328034419972603840382559 n^{7} + 189290493805462108148182349223465280271128044019353530577542548268394939 n^{6} + 33713214952558018936661876190382840308834928678598044021869076465679346049 n^{5} + 3336507756217020254994009322689751704540550355732140969517388233422788673995 n^{4} + 198168598920381808796046907039537784562691916340369286439409380302567059948436 n^{3} + 7063742705444763113593134039990246482957292513068081997975150378574567018205346 n^{2} + 139918555131495923417887786693598417583987551900567618607186609532534131450831996 n + 1188116238969743894151165797749437830609675557822833686545403911103052208200977280\right) a{\left(n + 60 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(620659289035812536285618930058467531295213426996382820684177194989907 n^{7} + 487603785074785959018378020284168882016379272185596443112464087954260039 n^{6} + 164172564669883790814575654479278156736141539489446502912696384013746489205 n^{5} + 30708461914309603017709540631672784414094356799266131862668507762785001772550 n^{4} + 3446380701579373705257394889700701061714639154377553376253601106409887510526658 n^{3} + 232068458415198594021195596446843984236908827364792945071787764831022909713606471 n^{2} + 8681462428214026622070762256491126144461579681445501962304803697358549185546466770 n + 139183984363520442740861519785270545458749993322798751671143355984435147375909705640\right) a{\left(n + 113 \right)}}{4909513794346772083519782912 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(710622552887570032326558434497941120420414738822528918308764343898019 n^{7} + 299493503493077189063460075742731883792598363035484219142318200243746943 n^{6} + 54104972238223856205647577177009018503258760464488583400027168628271789145 n^{5} + 5431230168016109266277728190758749478280137921542236611143126061172070860825 n^{4} + 327190058842442538413515432687692809329107887057133880416340627325694628548276 n^{3} + 11829024483005505890626510733851147585340778065315481767398409116994788702737632 n^{2} + 237644216256450793461212006628597518103420412463696023215036909820090901597123000 n + 2046620432436340949207171590294525459694603599903108304000585531927480662874990400\right) a{\left(n + 61 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(966784844097830006208488092483352963335829843446308152510786800582936 n^{7} + 773164621951392599649649158364411106942443677545535997298236697822432408 n^{6} + 264994626990980004696481160291588027455206428122230927853269723494175171247 n^{5} + 50457928286374501582319570947771601339623310013967964519880611963305370646440 n^{4} + 5764647902883399149037010594899151857485332028632264757226885024328076597199829 n^{3} + 395154741565887912470100832147572041992584381852612664400238203945273190358758812 n^{2} + 15048350858762288595276389206577071559531689399359427944906256953235589013909105408 n + 245602991964958184847751498907608152279250897495301311429962933134485911509018463360\right) a{\left(n + 115 \right)}}{34366596560427404584638480384 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(1042385754925535778887603853208712993499508592442899009373148470170389 n^{7} + 826221805468948099629511403800582657913656758287564205028167900214670059 n^{6} + 280663567134003067610615372205280258117385766451344470786392716895280243098 n^{5} + 52966455545222897220519728279595352637219213201776916274169729758083997356650 n^{4} + 5997427668527513828639049778773128843168222390302614775112929407226999182688621 n^{3} + 407453788911020006285175673375664277390691486053676010513520298196853392776888351 n^{2} + 15378613345224012170748574705239597906862683914784639622204859806999670698279942272 n + 248758074261622241659344169163175204905389740077152243448685573552939653495605220880\right) a{\left(n + 114 \right)}}{17183298280213702292319240192 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(4792187361318714077377453352092320687881390859070516421533523984363222 n^{7} + 2049025016041864354448396004482663365037228780531642123552200825275566625 n^{6} + 375538550284248940317142236179628588194040070526797973036669979142484879909 n^{5} + 38244156681716885926793958145990239097603899857404706173116659560327564368255 n^{4} + 2337266017922243850400833557828780070433079764140643379496671541192505784397713 n^{3} + 85721418479368656029518625929119145440808365629261667694700885196478868800990800 n^{2} + 1746991615005628510506286749936315263579332681165348848883193200828889714983500276 n + 15262102825207711656182288107047203396648220716410719673718986762904739816584824320\right) a{\left(n + 62 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(10363487278188178843649213811002054977539962931908840501232068982740785 n^{7} + 4496223991840172390857401975000183926910225225101385178609409363976730438 n^{6} + 836137573082104260360426445253358351216867747257948183192784250426573045702 n^{5} + 86398163296533382064563222215706111150828004734684965670413963107983096304830 n^{4} + 5357437511260590019842505879718722264389288975890241603526747850347505379517405 n^{3} + 199361303039428228191158422452044736577897753207519060394945095059509186316225412 n^{2} + 4122280323229913630220306613229132211144131908327061319970300835799714341695379508 n + 36538316655624032883429597923785268125975425437732615382183659704714025226123593280\right) a{\left(n + 63 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(14483534621628201096995819962516299518543689824692606734122140732997999 n^{7} + 6471824697333301297798980055280694722534548263626433275448590907143750482 n^{6} + 1239536880443554154813193709599446312083211123928048890939775164796007800394 n^{5} + 131911107836543282893445555144438681199003118660124391942368218543681610459850 n^{4} + 8424047595840385052443801575721806242902642820235446142781269083051460976278971 n^{3} + 322836419735348943565967413470688663083593295730618025294796653080100552296693868 n^{2} + 6874603458327555428453852975183103563645596560381809585576748253089498334888663956 n + 62750473197714838500274894548612934469881764081398444007572493518000372980737496080\right) a{\left(n + 65 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(16830148715169744729071638702163831160732441120710424103467319343484617 n^{7} + 12990738635899937250213807555291828397833469618513654265000887410206264041 n^{6} + 4297316938397324459996221929280564164887453430229938449016450918812840135660 n^{5} + 789737584025777648189302911349146163316940178373456888464988175703446587825575 n^{4} + 87079076995513401266216621744729979589917827183908388643341007090331301129729063 n^{3} + 5760900392192793965008894564247044454684678551720633255134696415982520995954154124 n^{2} + 211733047158739776247757271551982968575375923608218954606188778769092522884030756000 n + 3335065201451385896718757902069031049448881615637513736393328874557851314968857538640\right) a{\left(n + 111 \right)}}{34366596560427404584638480384 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(17446463011781577360175873832538439617570705553851334375480433168173496 n^{7} + 13585712390814307412930838496056614804269405914766845381142490323859708596 n^{6} + 4533941991114681584604298835508434865981210936503385616309234634572428109103 n^{5} + 840605580087465055817874550222533711389073047748809353084531715195820192670195 n^{4} + 93509355568368040916635502314143872930720332482992450767963111497476720098088159 n^{3} + 6241145516801169781787367279052246837271290922987763641739125485877976036093960649 n^{2} + 231417505886863477095385070035705962174386342067581296142631970649067947877445968762 n + 3677447188027128137714973823165253190165705738821799379781146301103409375663132547280\right) a{\left(n + 112 \right)}}{68733193120854809169276960768 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(21596426366542988075434725852827575352050807703392275767800748679646855 n^{7} + 9508366256765297078888867086382324039286668229086560919879050237408284722 n^{6} + 1794375377595642909441184519427798123198495759880576224603061605681738099566 n^{5} + 188153809104253955348428813452403011731098326489457559853762438538994341932170 n^{4} + 11839507222508826792087805183963569495769771495430161117656303639830879986981495 n^{3} + 447074760655810809470639113386209332507696687883327902960958651142597539154487628 n^{2} + 9380674006977009955304523728544707080247275617208757934205186193211033869731065804 n + 84371626308131485592681592523657447647835570492532702589448995694365791477434690560\right) a{\left(n + 64 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(31133957560414810703274444212891178218969252609116031300239043218228936 n^{7} + 23820685820019783931461901263570452231035803736626724350562410977057428153 n^{6} + 7810723225289055354538490609072949315034101811403922907815023367822682079785 n^{5} + 1422818542616892093317542599396530185685566123715891074616019708577972838916190 n^{4} + 155508009429928389659787234787503993820641746743341832716952126118576893498161319 n^{3} + 10197669381123619536484619794390692651492163963119772193346514805520269808201012937 n^{2} + 371509733632324368982116174601869486754755556675385147832512425768594266301898579700 n + 5800377087123557875679506874943782297472768198451405201876415156698168414246385148900\right) a{\left(n + 110 \right)}}{34366596560427404584638480384 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(41912977403083178513946556604709834461309420103866386900003099978330139 n^{7} + 19588031437735918225545365570193961180775929651949715753361749976956962298 n^{6} + 3923834077578441546255918651476914259328346761016113703270500858813415119002 n^{5} + 436732845366665187001191168048493453169329446438034104485825077696991544321930 n^{4} + 29169826367224756610271737565265240947284640021473913198343026463848096239040551 n^{3} + 1169144891684498767402663822591555375889815815594892742847298075959688453711631172 n^{2} + 26037507843733671372479584040642747224756600872347378473351871711259598414224067548 n + 248557421462843416559870378916600856909296852918601570517210153899837029688087248000\right) a{\left(n + 68 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(42294383672005830559912683175118294214892271472152154747325982192259644 n^{7} + 19182399557487705833578722461947429123748733937655902668679470952424642739 n^{6} + 3729083289651962150221632827443834381882917633932078769503360913158772378902 n^{5} + 402799185791311918770581711824013874778581419469089085597924759922893114359175 n^{4} + 26109014933594490245106699375711944586429570417448898671461618042092335752338306 n^{3} + 1015575549672284839457979759540858072536844550219362108177371130179567512452819306 n^{2} + 21950007555405473685453716159990271077605460115622421264415207847961643159303578328 n + 203356597948293235148388079941393237855411337066389528388650354017209974216471499320\right) a{\left(n + 66 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(62197945941682225052134907552721361452105684950565890685679324893409194 n^{7} + 46755099078148793953035142190589328162861176185225346902029156843102605928 n^{6} + 15062547932848835176788378484365331012065048707863899886810868244264098735863 n^{5} + 2695806030942687045729425519145838250207100022444859209485818338953397269566495 n^{4} + 289483135861127514397334568060251254261006865343371096117751954435153937879965581 n^{3} + 18651005927554974491145119092367302085567595624681488894073727151175191025351104697 n^{2} + 667577656709070529606782685648549230953537090488978518969879199406765420892438479322 n + 10240414074874696312196299033381878174084809605115524090172076245073647542797425783400\right) a{\left(n + 108 \right)}}{22911064373618269723092320256 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(110252290751244646832980177947319261909782894915592581201829897781775982 n^{7} + 83613904561471394568493663057202802075759399918840174940916088527724903726 n^{6} + 27176034317186613647414506955629594806830789233799761128944370833412724425898 n^{5} + 4906983237909374443569830937381197649045535399295326287061864356035630350361415 n^{4} + 531603306888902693103907985534004965169244492740159446319812798053816277407326118 n^{3} + 34554555967174905433082757352497541492248560815705072592645271816062298502083225699 n^{2} + 1247796266378269337252425350070907124472923035857544173526441919719495008777808955762 n + 19310718038620788599552439887605047754758704126420642378533777581218574214180432115760\right) a{\left(n + 109 \right)}}{68733193120854809169276960768 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(131371924111950479572468204697342346885498421891334006325011035824268657 n^{7} + 62326304827139281098040703863231421604136874923989157543599017461807324344 n^{6} + 12674088621093459382432210117338888852164941217250813742922144772165384220900 n^{5} + 1432010055094102045304571330426523754410728540308418130961353333210103112645105 n^{4} + 97092646904351296838139951036596401226607432153338713504074973236218967513187243 n^{3} + 3950398049882924419001826361352872513640635675493878436544570129257340440698644591 n^{2} + 89307768798455612414892271554145407472859683412759064531685975709879583830634860220 n + 865427430701485659843977543820325281987484655839424884496613072315246201106545946860\right) a{\left(n + 69 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(159739531112467999299830841101828685490147721805025428815207572995506141 n^{7} + 73541590487190329708436491539754057157065427314669943047228227230467396983 n^{6} + 14512150056114904163340877493680381434315384582769924494157111380039522980483 n^{5} + 1591170726491909947282175924916340834241615690108351004401554392586946485533145 n^{4} + 104692561272290809664262511305525434981785471724835619779859213778109968527522304 n^{3} + 4133643422025594597647621277576190689690011807459359631306253315273747718872784912 n^{2} + 90687791477022015858891509803791942321775580029288737341182672768262074822257811152 n + 852831751979105046704015848982271931544427402119891323800518765521902007423198009200\right) a{\left(n + 67 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(225350546760062415740099803774677792450189344631812002478145218733151018 n^{7} + 110153932169987952071126122329910640068407755903753003034149687215136242707 n^{6} + 23078743445898101740032645710994521707776742714913404964710515832639053798151 n^{5} + 2686591362589876898211354288060455439556940157185147301464030545459167772514085 n^{4} + 187669810435251451655257250404551212961205797587922513282542049731125839360097507 n^{3} + 7866705461751414095117703854097564850473893143095595832233664630764218412890286488 n^{2} + 183221167562383586937998092130178865226055229271689192693730509408305814320505317564 n + 1829114127283239617684016746349914136240125171287857968755270851868193820589018159680\right) a{\left(n + 71 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(301544903021487812600115250895502939300200819928379865843680210778779844 n^{7} + 224673856674810623442887587398582207365919796341737748105089906684220999122 n^{6} + 71741357323385874120909471126109032924316889385130834037718059123995049980349 n^{5} + 12726452373273599181830456536500661701813017048209765830227526938855625822647750 n^{4} + 1354532827777914675646913133541445376273284539983666192225320966900344320477337391 n^{3} + 86499990441697240172104511958868092763423438478692284362900067304480029871950777728 n^{2} + 3068761304413444669116816941194765377593797382927126100600522635777440694177277331056 n + 46658023458378373759130782251085640447478550018063625689502804753759102539742615511360\right) a{\left(n + 107 \right)}}{68733193120854809169276960768 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(464999521797787535761537184449251838352769517188031118110553503845236570 n^{7} + 343384208413170828621128401003817445604250137159593497877835766942643526525 n^{6} + 108673775321843577629887273245990565554642851405328929417348164086848835064856 n^{5} + 19106891416574529053821687975292094497494544699463337627544618200890427063749040 n^{4} + 2015579152025970240590802711262569486015971708704608343587706857342405459251440700 n^{3} + 127571646433277677260360097557225210239980261360416468672128662786558962528316361215 n^{2} + 4485688663476804816616994470885299215685306806808232552633248120634942106958406140894 n + 67595909427538720774421795576965339117038757962791808779932294418964345054409300882440\right) a{\left(n + 106 \right)}}{68733193120854809169276960768 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(624311935738145738001656159008843793279874619336287577392487513159882651 n^{7} + 314208756589144376318476907341062735844024550242886191281004330092473049679 n^{6} + 67778742978142064533114905324474920782443163732712258352441409096303227753715 n^{5} + 8123309381815332384743928119342044677158511021536152822923974296407488609488165 n^{4} + 584200471590609812444712963442945398564062680773229270752752406596827414392787714 n^{3} + 25210511954885645569987934200499524020986842120791330251596622488582976353817002636 n^{2} + 604463339414369941055323433532833522962168723756894234417251928042722368700354084000 n + 6211893243992287162618318475743399615032026856495702159314109750210201949523389086000\right) a{\left(n + 73 \right)}}{157104441419096706672633053184 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(631824459018191567650533900157463041057693081461719768797427830672419694 n^{7} + 344634355946600137877834210538682001840010560493270930158642100217674750959 n^{6} + 80562415045663733473186447556548551354754580144818943889934479187547873120621 n^{5} + 10462188421362999371942576926035607494520184778134119813723605657363639120112330 n^{4} + 815178299813198495144491508966853554853286106824834746338432621817757765902663481 n^{3} + 38108583162732916958884379595740982211701551814550807092665317250162074279691254731 n^{2} + 989713443838590507788516871308676998833718077898943587037173971527921772188036730484 n + 11015607326076065442433416972234944154143600948196867951496607176070943448007259073620\right) a{\left(n + 79 \right)}}{13092036784924725556052754432 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(920020377443825706491977650257591186036762585257177815801146557692174022 n^{7} + 443072871399128033549755814197796528560144667728398771925585958966476405203 n^{6} + 91459178986584856791974652225269753032397146248185723359899208467430834755205 n^{5} + 10489646537072024286859166169485073088178023836998649099221534142113552790310785 n^{4} + 721942066633191361315713828365811938107986430394202840742222660263992114654650513 n^{3} + 29816358440180370823585267222474830113659595284540661955820354864046711946780805452 n^{2} + 684221521705429602324693897747195707696845174147332277719237901162311415349338111860 n + 6730190955115401931154939312358726723986460510643871508084851690866709730618646431120\right) a{\left(n + 70 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(959893223817785394127912076782433982768438749916261166553898113791331885 n^{7} + 696164815253818169721086043621862777093368879811983548684196910491906189764 n^{6} + 216380776006021404810117203797856785494852767019090277987499518449808948246664 n^{5} + 37363450423604166162827390733427553184262799195561661036803631518593025022321170 n^{4} + 3870977849935075934166449299637823986889434643267768145627119505340067962599138475 n^{3} + 240624454377335498035179300048717511309443813635233975513061547944013487825833936026 n^{2} + 8309605428818274665618788772235934477813565481021590129776409082183944881188581753376 n + 122981073876299294034137906483179796680653386102078330926527554718159876787557836869920\right) a{\left(n + 104 \right)}}{68733193120854809169276960768 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(1367999896477474614121527321187878014456572559005053075466196959883401117 n^{7} + 1001183109637991751798995899926297272899190896017319991132416745584665077059 n^{6} + 314020412273792608872503722426256119709114235829022951479370063036811365034631 n^{5} + 54717139893570038878288011484132245180491234883719076954120148011172471157735845 n^{4} + 5720496759813704697379233052282673179762174077169075695008401332870968361050584708 n^{3} + 358830121757964869660474372375123362065465955045311026468496703032062112222887683456 n^{2} + 12504462369847830267327177998940682741280169571340872868551133791318406439714907094784 n + 186748792652289001423865836708231050382577686973540818191185148385959082241915143545120\right) a{\left(n + 105 \right)}}{137466386241709618338553921536 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(1822314405816799931218406316169449164929156372229639441207154193226120093 n^{7} + 1244426330112069361839707938336257680824541015642200290361804422856397939122 n^{6} + 364213006349241758444419836559358651349277696703884235665357349121879707012468 n^{5} + 59222481342527670010231710261012724969339754138382429241374033746467892306553160 n^{4} + 5778120908092121471001795583838109463440733391914783959234360993822944722970206487 n^{3} + 338263981123484016868507943706123288880909600093106120880637505934224591016933135358 n^{2} + 11001970146900242465643210873317854914929769935833759579203123156348972055568682043872 n + 153365151255433360822032945311032581432104220020396343929372863877880713396002692811920\right) a{\left(n + 98 \right)}}{39276110354774176668158263296 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(2572411697400522367920198478356417457989120288060252464069444107172865788 n^{7} + 1848576837668272273049985195268366064126224991627027163401330488554526744295 n^{6} + 569315442505313098887771153151951120461863018372671707904159790065571499985220 n^{5} + 97407208020357002910492469527229116490327264915809253450345465174920875112260060 n^{4} + 9999438744578982065328330003114450902583643139098507145360969701532857406758281122 n^{3} + 615894772773576314660295652277068954807225189462734163039357110914866670140507738805 n^{2} + 21074631428410476145927154398661812991527161281042739297395580530494174822339151955030 n + 309052114774426007393681999536168676380573930697632943987175320905273141311095665634640\right) a{\left(n + 103 \right)}}{137466386241709618338553921536 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(2651580534725161709637719993846306339702825634300456396631353796614459914 n^{7} + 1315330903039197817127015356171347706595760627984127266506180692088100798571 n^{6} + 279660188040821153302142069185330796683435400747372746768461326761583955549107 n^{5} + 33036784728114846700678275162799410359893090092672424679397478160383832122512745 n^{4} + 2341865740225229309530530595632785859975612689532915050948380737328957287879394031 n^{3} + 99615095989208670523652295153811353741326126638566399624373805986271651425875067804 n^{2} + 2354319436392313469146885262173582939497575963301215553455148048201028117269937480068 n + 23849556288814860615673163565645335702551708450456818229476383240115494904950266728480\right) a{\left(n + 72 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(3528254033543302422143869974139582373446511318199570853897736889462557807 n^{7} + 1801105798771517601286296858842104806174794489842194142683036515582509276257 n^{6} + 394066297041734877152492054702520382722916559280870156444303715426693795149818 n^{5} + 47902191171671393670193413452232817139609052122302794477817626483911912822218665 n^{4} + 3493995143837915907931514931720707377205364289134778143634879678045975346511040823 n^{3} + 152922402361408645853159855572154655817883789450105774718945321807233081409534150678 n^{2} + 3718597270382836225144250144466119700878309357115416829050326736725531949386164628752 n + 38756380122850112382774224862060750674687523350234806901064625400048300114739450258000\right) a{\left(n + 74 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(4057423746734264552630010136064083338069429945614239727975821287088997735 n^{7} + 2860802723334512674124406132501204922735741398492802020206673526723393457243 n^{6} + 864466890112731336428891493121308380462966178472237062086321361254543776870517 n^{5} + 145122919569552960554285950437738510634265581885228426611073920597813997464663395 n^{4} + 14617550184371610489765087060517350857093009938755227840604886793982595521573164360 n^{3} + 883413684031975570305419475238129364398190248724391460387656927318057669342237517442 n^{2} + 29660661669960180100123423767170936868773220942131357766093531577331294074177141946508 n + 426796106558768860181725048227436934429396243241157656631480904921402338977821142999120\right) a{\left(n + 101 \right)}}{137466386241709618338553921536 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(4325520536463798977397626718470933354291476918300095564403243012759288959 n^{7} + 2447342568727050706341415780085745294084012805445741389056756287695129483736 n^{6} + 593398495457423904424836156057870769607618783231662628032538398921557409405128 n^{5} + 79927737877292849728487064467982031916356230829574166447803893038436169696136800 n^{4} + 6459093866645568956849789261253617771635168233396796619972329057603329681971147181 n^{3} + 313161595683856716836659695986374261274768520772651859252816910064189967318751757844 n^{2} + 8434596360025953658066238804554076957151160991187971830715915130700654101134689958952 n + 97354172713816615281924461057216998891065736554781577890910966910604976741334131487960\right) a{\left(n + 82 \right)}}{39276110354774176668158263296 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(4821262829399740461469889593881765015901242187377936482482103671128383521 n^{7} + 3365394925779278951748766335371428981681746639288762566356879376985300671913 n^{6} + 1006789265235092385681892463507553723275211857561738030551836083711917288166080 n^{5} + 167329586759718460343564287642057659065983654151438283864918842330321098975681575 n^{4} + 16686386756510675228003171119775521602505088240172932769592477960556593639452797419 n^{3} + 998406279232197748556337503926940917351647395690860934226078920967643422476440826832 n^{2} + 33188223313399854653130345650249158835593341701060993721367003623520388115997909057860 n + 472811629068450277356660709439727085242904157899770355369675291515949508020513637985720\right) a{\left(n + 100 \right)}}{137466386241709618338553921536 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(5726608565745663640025491895784129953355472277438921378608692850550881687 n^{7} + 3004616898410201836698183184565958844205878625721005543478735224347205537391 n^{6} + 675638876277231221926718471710749002582278268215681835484725401129923943933619 n^{5} + 84407082798030554237094085204752581402952198564581193713953428012959024258218745 n^{4} + 6327121610472623548728713757691394990845575145819335680123571487222825432046507038 n^{3} + 284575201041842001695305718757383350286203510563239112730547763900274581971618026984 n^{2} + 7110961006648837077226592719432730173073696028952285659017839272618785463649730272856 n + 76154610184919155624013642791010470030357430258976077143050439208621783656733991403920\right) a{\left(n + 76 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(6189341153618654715415908797017892473428691779056395732979573058463094125 n^{7} + 3584844786316440658235711888155007396412890715595893970104983560391980485577 n^{6} + 889780782544676639072776778509801953943097518084322650274859596999296928437426 n^{5} + 122683565977970531043777954661310723758331478429952385882363253486781690644898285 n^{4} + 10148548041679361530582541280396312536116691073817811505425509978678422230054574625 n^{3} + 503657464050678009063812247649155720432341323064977927034173038868531335101510189698 n^{2} + 13885336545605775193939177758690697476512814796580984093619790851360765311861031225144 n + 164044896973227342701525063481186592007598430891499965462742277123600979049225604487440\right) a{\left(n + 84 \right)}}{39276110354774176668158263296 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(6594699308325738506039512415221342473472586243162487724108797068450079505 n^{7} + 4694843026988762302737245542024281573475773212524379453110188337023773751174 n^{6} + 1432409706831024945823019262410392570946447175989706423090448631220057978066370 n^{5} + 242793915127643258374592264263868059685466761401262894753044014759674944456639560 n^{4} + 24692009870925531052056247684068197287561412799476896786687040822121829498966632565 n^{3} + 1506687437330101376426369879407613274390183475089868106342898857845110220998370181586 n^{2} + 51075684894522500870624275750931415251119913994450049782334206931574976175140800724600 n + 742036446466289188275147628164011911424555730207320622782654378365675632835925194735200\right) a{\left(n + 102 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(6671653315359297270910321669233529085400066236270852632756091161048850899 n^{7} + 4386718187774050156391117306694305446713237396124867682878494035452954337544 n^{6} + 1236179103043177147920149001727623963975301620164839367260903216571892146996902 n^{5} + 193536878884342337664025019568198571687416435210602471921095022569266914867171800 n^{4} + 18180738220560798553892378437214088135177255779899538219214024389707728230860640971 n^{3} + 1024768527622486019211109642024405572974263738858977422405755151330737099191258717776 n^{2} + 32091043255242425428892354793001358142259049322937006154884640298153801896595589256508 n + 430707553718469872625815708712455068669364546391948064145056664823725586669242826087600\right) a{\left(n + 95 \right)}}{91644257494473078892369281024 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(11144910477346511553455727650837612639142433047893444983636749126858942938 n^{7} + 5768756982445291325928828927864034191494200666468656196232412171040624260541 n^{6} + 1279764930903390337958127850778211956349464093444971547009218635873653560337309 n^{5} + 157734069976853188983640696309175944096578329154220284681598242532765395472347115 n^{4} + 11665213216099417095268054237954589121259725876181063219241653669575709979282395637 n^{3} + 517645563629635028662610357914398787868228610672874341199717778153852972901533434264 n^{2} + 12762095288478230167416349752100237754579098525096627590820714586907414849958706226516 n + 134852080942567063880592939680015921836350770504608899619317989734455923576439005774880\right) a{\left(n + 75 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(11165224562251719920310307829021246409063914882609158696434232234558074236 n^{7} + 7711433371777457962670309047108292154230082692713741707911668877761479043765 n^{6} + 2282633614442454572457079683814553789413459915988529178396604106472530084300179 n^{5} + 375383456194623109482082217924793479483279013677422853558271364680385001249751865 n^{4} + 37040404181484809701194000391520960084569185994434469884530474725487950547521153049 n^{3} + 2192997126435511920789965800448769110609708305978687468636981836486319725711817634410 n^{2} + 72133747771012226843462990555854928803231258524419328422233443991082153116081259021376 n + 1016887303640870141687938612148038725839421084753080163258938839429684519194949748789040\right) a{\left(n + 99 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(13310115115146790444908478261032404994822020005724491523457935828924175258 n^{7} + 8244733552810267381270157811748457437621160256553518458779239310925301249995 n^{6} + 2188510401096073339001399706594661169928751696272585907955237228697010563089121 n^{5} + 322702116513232867148309388454369048293879912459346938355102083818318994189037925 n^{4} + 28546951497707962226824171119379205174156676445555285706282713727203672211619289137 n^{3} + 1515033213557620399087911156947725055814307361956030487735892283792848985205685769040 n^{2} + 44664768446792014167793772396010382829874988018468273090148421957734266033913444245044 n + 564266211005597713758985200792370012034656883110743117359028705496371468207341661948000\right) a{\left(n + 90 \right)}}{78552220709548353336316526592 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(14589490668447632723304628117109273448860010068545092025482949630183982072 n^{7} + 9842938335585693592875959541006588972664037562748472631747176620768935790345 n^{6} + 2846129908575490122081208531628420505649491283227144152103550489123271106035123 n^{5} + 457230045773013160357654479960421130902870197422411891585946700693591598492446975 n^{4} + 44074676375291461452881421156158251161362656041741788441407916600195667554884168193 n^{3} + 2549284566530686024293907518444923444179394212795801909823967474854238442941796377880 n^{2} + 81921716578054898062300446980130585089848616557110517784212402196535238566245279407572 n + 1128307607365320549239861404714861120283704827747173962160960186181316188143977692466320\right) a{\left(n + 97 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(15525701349289828145673822851838733825205176833147607069129210315343712847 n^{7} + 9303061000940786938751277015775537627460286806454306577484230636004561513059 n^{6} + 2388789045774200948500679149413371081453401000075231333672585800848965942634743 n^{5} + 340730385794210095942111557823040819192665056004937723484611816860416398642673145 n^{4} + 29157372522026533479161972811296494542908940009048007490189354055079328179569142978 n^{3} + 1496890114162994376391924375641125347716112787570084670484417704487927844820640121356 n^{2} + 42688536900651332980168543569722633193465621441830464170925540498838001358657553650752 n + 521684230262774627651331005527887262465659472139894568675333543191268900014996308115280\right) a{\left(n + 87 \right)}}{78552220709548353336316526592 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(16918840535647123089077012382093049054698172213589890567074557597969606671 n^{7} + 11269926024695495675624904872200565230538493831245247695003283843725927887444 n^{6} + 3217480368890239023189672634276435028356686369753281428680776138124110042013472 n^{5} + 510340688411936500871760056432151105613013432673036365217856379121327083800749400 n^{4} + 48571162006756931317341949154701278052632844548244124975877398517124132008233700829 n^{3} + 2773777453384454369193231689912632010647661388564884901228028014837782969722082414476 n^{2} + 88006879023371342758395304285010347402823719561167077162316990994524745947177621499788 n + 1196768250737045405376291706458328586349559225052339143556382520860442562384631257646960\right) a{\left(n + 96 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(24071429227456730071919913052080225199179853261952877514909719537310681725 n^{7} + 15625779434373925907541286722899037903764841698121658645339829225810205428557 n^{6} + 4347123462383509800676510192589498969157986109158693645497147265513419328543451 n^{5} + 671874174560155987269784682037963016575873080645021667838227668227495354800419335 n^{4} + 62305205783629974476223048766251141534350480717215894673276629929230843014586156280 n^{3} + 3466667101984025309278758713637375674977978498846136726065535135086568202042658960468 n^{2} + 107158998273891708233400025758128935562245027081044287101816809076549185304271262369624 n + 1419615224661565301535091337995341500824349875415826783171040436065229938102195395770160\right) a{\left(n + 94 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(24152603432135271531607797739737632107724347483688648008336758504957249822 n^{7} + 13338886470831545550969939670369231928573608080027213729450587385206970202981 n^{6} + 3157045953051432520055299015609616445289897728774183341925270684821598296484251 n^{5} + 415099503198973661898835146852193309306253811309192095290070044594478210307824355 n^{4} + 32745925223968723454481637932968144000338933680780870848169054508231608240004863843 n^{3} + 1549872832953625681785507574447445652919469429423678505841100998741833257256155402744 n^{2} + 40751618945736895246002133213356192581906456692280175037778222668841579431088627681524 n + 459197378276335594638015501033042050879809365686848905606482893914706594414127036163600\right) a{\left(n + 80 \right)}}{366577029977892315569477124096 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(25783987370320377061116416670446049514451753625757026743120996113314674102 n^{7} + 13708522782190816822874013365852420419081846897064004157946264890643259230303 n^{6} + 3123612497438636100623634271368287888760044179059693339111173670976204012608365 n^{5} + 395415964024231511894397242825624710184434873643472732053900700068628349439718965 n^{4} + 30033498058398558447596953104778340831080789251578808392341932297317700480276990233 n^{3} + 1368713899253723327097479222103486913628048896676936702407864983977815308883952900492 n^{2} + 34653818367581484000216809306482383109413194390421808174839536423403580311397220207700 n + 376025475455560760953219852161434844137647098341166997738517625708716432243679324617040\right) a{\left(n + 77 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(34889246575745585215691724754805141416972789624765935266314396189548256278 n^{7} + 22106291130190992310067561991836073896560364130358818464212256264397095824813 n^{6} + 6002487401136608882178336704431593798185400413992340579769244998776537621220345 n^{5} + 905403719138189972549310619224232919770819965084567316383825020786948235959004415 n^{4} + 81935669353084191071946795357510433879014800693227650925811273328743655590113295757 n^{3} + 4448604490189967253617441104803928730735150495384782652550497951312250852681054189652 n^{2} + 134174894386502018781179332083710150716237903771937688326722663270041701128517401854660 n + 1734249308503144743119004999375613101107790765693304241770906851406480711192043339063280\right) a{\left(n + 92 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(37582166201032287219608143299723765297630249722007570916923080135433655001 n^{7} + 20241489311842994748785482538931574444787549176345381419955770071636762651303 n^{6} + 4672202146896425025863537211440236696413661855213943598034618539027232566075329 n^{5} + 599133756202542884601049747502870337113243183294170318807890552647221106721163385 n^{4} + 46097028761074145705176926086239621848643164022632242115933770271582416365452033494 n^{3} + 2127988527287025393184148662980993024104303988752965221582244992021349063384365321872 n^{2} + 54574442762896182538022898555519102817314589743840505772739744927228261658241014425696 n + 599831088863242953193171009614947235099379357020056598449628682700071211178309579869760\right) a{\left(n + 78 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(40939903048760450138458820813573289959811447822508865148550511823431223187 n^{7} + 25644864497237116873063204507637149600985542429853462604064365159277321594683 n^{6} + 6883924685299885528584295141287958703540189382832127301778232443491186700923811 n^{5} + 1026498137678504293086011329351813349170544681340846262089638564293966189287801345 n^{4} + 91831212599788842093065876425304176402629465748359518687882979337833667698124513618 n^{3} + 4928702179578565684875146383549233973242473518401413143812747096742250499057591150492 n^{2} + 146947163714469824794505762734511010151635245617715890432721816225181846803991518919024 n + 1877465564279834399200585072339718802266605035528351938073869899286568134445133095846960\right) a{\left(n + 91 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(47724388675316426874828327779339777966827453614584987653795115625895134915 n^{7} + 26680334177584018827952108095655434016315937802817305061538597497838722692019 n^{6} + 6392082756712094018100476630637205593255127026777845041390686926752663831820007 n^{5} + 850742129474482756308270767194513914962397667318465973631145801978959517159012915 n^{4} + 67933124153606070693289013904545652959502177268864221685167680188019197463961273810 n^{3} + 3254567235209974916449784718887164324945777500099589922229520754031338693366725869466 n^{2} + 86618185659467768037305005987964922873773153410888863840503799555083917411880493532548 n + 987926716923987537611521771664925163014997860133406749299886044223687847817974385059520\right) a{\left(n + 81 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(51090702999802708555010332457475492848136453116025576723836748289341546284 n^{7} + 31299041325914261688487368249511818342488973903994053525367695285083410034967 n^{6} + 8216664027843428606167433353095285721532253922166675596839795428782877945151029 n^{5} + 1198227456761323531116131283976054298615753599498701293594158828915398897122238585 n^{4} + 104830011180416192955801754701560214138633091748840496873002425901409106071040732031 n^{3} + 5502173176619447642310216735545886929852926224358077416514720330746151181852743168048 n^{2} + 160420924398901908276649378524355399917861564558663907292338623742938907944116796599016 n + 2004293260786369571176408979354920072961981911170104659675442957609809528750382372554440\right) a{\left(n + 89 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(52574630438055083057960933038315744090033413900814352156618494166008259263 n^{7} + 31152426149865175981157627814193206709002718456803424068158820631731120043337 n^{6} + 7910198630250680337624872105435422461015839605310614335150493066420794180153694 n^{5} + 1115749349272338537027682634568619580796628574214494799714925875215730372315656135 n^{4} + 94417604614006141237745513059971831865291129626285121068871921170636497032041782047 n^{3} + 4793425491270808619330151879111193486929787503897324707546592129583654692745103427848 n^{2} + 135182812101138281577499751657129605231062370094843833472556486382860156908480029418556 n + 1633709225472383628706548073219442750140992292545746806131462538814830366792020099986160\right) a{\left(n + 86 \right)}}{274932772483419236677107843072 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(58211164644704203232393895862796587083440005369896460247884822212771891089 n^{7} + 37323127799438771890474377828234208501093894293970237806072643123953134647488 n^{6} + 10255436586670188270423321420704786856915167651950659153357207952108528108766090 n^{5} + 1565451380349271655934408985177102556567818180250608214222550296243587953879827940 n^{4} + 143370157943349924499392645271004938616098050375100559447022755814342171823033124201 n^{3} + 7877935388929058683078341936787582506986698035340688056846681527055965740990828837052 n^{2} + 240479212228879952611588667158174880257017256522134368511963973879053500274724673669580 n + 3145941625655586752207173294830141284862723232067953100489744360271992410710480584871600\right) a{\left(n + 93 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(97484006117242614663250611392519655587277207962632487718046554662534172043 n^{7} + 57113107338208327772323093119681275579894020447725402190672146511933201727868 n^{6} + 14339079577302807373671442612769411186821992780739454303638527557472439038379828 n^{5} + 1999833052667116113769376743142252760895634720765712107205719125208800645853543280 n^{4} + 167331066642397751667130978711655991763574836415060319440461034167721751987724075117 n^{3} + 8399809128283855440521793768415387171371695120257110524365704430362714915535392086652 n^{2} + 234233025454312731909536863431766730664514435924163554966501626097341553319483991449772 n + 2799033231804981031590851486140153338063929058434766802470406659290295627550074796872240\right) a{\left(n + 85 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} - \frac{\left(107625735771475609766150671018982440505006755695995415150988902317986816484 n^{7} + 65209165554670539985101918544847477040075407732026356476836950110698768920501 n^{6} + 16930772359861291005375259137918074245691212416306851214222073758211859035860701 n^{5} + 2441880287705557939651594796371498641059642447675620965429539842094076543103707195 n^{4} + 211287966923188964934527929622692704103643158558686900687042781134085327540718067371 n^{3} + 10968002103518048883928697053539746105324409628823738288980823007462254891337236528544 n^{2} + 316270338758887654675382847882938346436179617457812212728414734162998229898289862044404 n + 3908074794463538107930159253795863463809070197760963520981367657806022600661507266257840\right) a{\left(n + 88 \right)}}{549865544966838473354215686144 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)} + \frac{\left(147817013945389890775980840194264950920809197378685238877395227358157273521 n^{7} + 84625981991466279082856737917153609659795178838966377116752942598562130588966 n^{6} + 20762221582885248301633385205943952058425850243595962766393428902154257854190952 n^{5} + 2829689394264493025432896378520000687848911385303424989325909612526743357313536710 n^{4} + 231378004989897325893960253974080159806442043034677838518657636020440979082599467059 n^{3} + 11350722208732115516218228096740658491907713021781053477415823260886388392800760273284 n^{2} + 309327860469972839344816165069485120827145315668973670839069330824103793712148231234228 n + 3612469391417398119837887344094966479487806505630853071810900347137389769950105700733200\right) a{\left(n + 83 \right)}}{1099731089933676946708431372288 \left(n + 158\right) \left(n + 159\right) \left(n + 160\right) \left(n + 161\right) \left(n + 162\right) \left(n + 163\right) \left(2 n + 323\right)}, \quad n \geq 162\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 90 rules.

Finding the specification took 1189 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 90 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= -F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{14}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{19}\! \left(x \right) &= x^{2} F_{19} \left(x \right)^{2}-2 x F_{19} \left(x \right)^{2}+F_{19}\! \left(x \right) x +2 F_{19}\! \left(x \right)-1\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{32}\! \left(x \right) F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= \frac{F_{38}\! \left(x \right)}{F_{4}\! \left(x \right) F_{5}\! \left(x \right)}\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= -F_{68}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= \frac{F_{43}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{45}\! \left(x \right) &= -F_{64}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= \frac{F_{49}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{2}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{21}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{59}\! \left(x \right) &= \frac{F_{60}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{60}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{28}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{10}\! \left(x \right) F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{72}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= \frac{F_{76}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= \frac{F_{79}\! \left(x \right)}{F_{19}\! \left(x \right) F_{4}\! \left(x \right)}\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= -F_{39}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= \frac{F_{86}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{86}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{87}\! \left(x \right) &= -F_{31}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Tracked Fusion Tracked Component Fusion Symmetries" and has 86 rules.

Finding the specification took 2819 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 86 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= -F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{14}\! \left(x \right) &= -F_{20}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{19}\! \left(x \right) &= x^{2} F_{19} \left(x \right)^{2}-2 x F_{19} \left(x \right)^{2}+F_{19}\! \left(x \right) x +2 F_{19}\! \left(x \right)-1\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= -F_{84}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{32}\! \left(x \right) F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= \frac{F_{39}\! \left(x \right)}{F_{4}\! \left(x \right) F_{5}\! \left(x \right)}\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= -F_{64}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= \frac{F_{44}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{46}\! \left(x \right) &= -F_{60}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= \frac{F_{50}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{2}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{2}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= \frac{F_{58}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{58}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{27}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{10}\! \left(x \right) F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{68}\! \left(x \right) &= -F_{83}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= \frac{F_{72}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= \frac{F_{75}\! \left(x \right)}{F_{19}\! \left(x \right) F_{4}\! \left(x \right)}\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= -F_{40}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= \frac{F_{78}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= \frac{F_{82}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{82}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{83}\! \left(x \right) &= -F_{31}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)

This specification was found using the strategy pack "Point Placements Req Corrob" and has 90 rules.

Finding the specification took 2497 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 90 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{12}\! \left(x \right) &= \frac{F_{13}\! \left(x \right)}{F_{0}\! \left(x \right)}\\ F_{13}\! \left(x \right) &= -F_{14}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{14}\! \left(x \right) &= -F_{19}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= \frac{F_{16}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= -F_{18}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{18}\! \left(x \right) &= x^{2} F_{18} \left(x \right)^{2}+2 x^{2} F_{18}\! \left(x \right)-2 x F_{18} \left(x \right)^{2}+x^{2}-3 x F_{18}\! \left(x \right)-x +2 F_{18}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\ F_{20}\! \left(x \right) &= \frac{F_{21}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= -F_{88}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{31}\! \left(x \right) F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= \frac{F_{37}\! \left(x \right)}{F_{4}\! \left(x \right) F_{5}\! \left(x \right)}\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= -F_{67}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= \frac{F_{42}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{44}\! \left(x \right) &= -F_{63}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= \frac{F_{48}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{2}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{20}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{58}\! \left(x \right) &= \frac{F_{59}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{59}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{27}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{10}\! \left(x \right) F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{71}\! \left(x \right) &= -F_{87}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= \frac{F_{75}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= \frac{F_{78}\! \left(x \right)}{F_{4}\! \left(x \right) F_{86}\! \left(x \right)}\\ F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= -F_{38}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= \frac{F_{81}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= -F_{2}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= -F_{0}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= \frac{F_{85}\! \left(x \right)}{F_{4}\! \left(x \right)}\\ F_{85}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{86}\! \left(x \right) &= x^{2} F_{86} \left(x \right)^{2}-2 x F_{86} \left(x \right)^{2}+F_{86}\! \left(x \right) x +2 F_{86}\! \left(x \right)-1\\ F_{87}\! \left(x \right) &= -F_{30}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ \end{align*}\)