Av(12354, 12453, 12543, 13254, 21354, 21453, 21543, 23154, 31254, 32154)
View Raw Data
Counting Sequence
1, 1, 2, 6, 24, 110, 544, 2826, 15200, 83910, 472688, 2706298, 15701616, 92114062, 545487968, ...

This specification was found using the strategy pack "Col Placements Tracked Fusion" and has 27 rules.

Found on January 23, 2022.

Finding the specification took 8 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 27 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{3}\! \left(x \right) &= x\\ F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{3}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{9}\! \left(x , 1\right)\\ F_{9}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x , y\right)+F_{12}\! \left(x , y\right)+F_{13}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\ F_{10}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{11}\! \left(x , y\right) &= -\frac{-y F_{9}\! \left(x , y\right)+F_{9}\! \left(x , 1\right)}{-1+y}\\ F_{12}\! \left(x , y\right) &= F_{11}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{13}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{3}\! \left(x \right)\\ F_{14}\! \left(x , y\right) &= -\frac{-y F_{15}\! \left(x , y\right)+F_{15}\! \left(x , 1\right)}{-1+y}\\ F_{15}\! \left(x , y\right) &= -\frac{-y F_{16}\! \left(x , y\right)+F_{16}\! \left(x , 1\right)}{-1+y}\\ F_{16}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x , y\right)+F_{18}\! \left(x , y\right)+F_{19}\! \left(x , y\right)\\ F_{17}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{18}\! \left(x , y\right) &= F_{3}\! \left(x \right) F_{9}\! \left(x , y\right)\\ F_{19}\! \left(x , y\right) &= F_{16}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{20}\! \left(x , y\right) &= y x\\ F_{21}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\ F_{22}\! \left(x \right) &= F_{3}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x , 1\right)\\ F_{25}\! \left(x , y\right) &= -\frac{-y F_{16}\! \left(x , y\right)+F_{16}\! \left(x , 1\right)}{-1+y}\\ F_{26}\! \left(x \right) &= F_{3}\! \left(x \right) F_{6}\! \left(x \right)\\ \end{align*}\)