Copy 377 equations to clipboard:
             
            
              latex
             
            
              Maple
             
            
            
            
              sympy
             
            
            
            
            
              \(\begin{align*}
                
                F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
                
                F_{1}\! \left(x \right) &= 1\\
                
                F_{2}\! \left(x \right) &= F_{21}\! \left(x \right) F_{3}\! \left(x \right)\\
                
                F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{229}\! \left(x \right)+F_{4}\! \left(x \right)\\
                
                F_{4}\! \left(x \right) &= F_{21}\! \left(x \right) F_{5}\! \left(x \right)\\
                
                F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\
                
                F_{6}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{216}\! \left(x , y_{0}\right)+F_{218}\! \left(x , y_{0}\right)+F_{7}\! \left(x , y_{0}\right)\\
                
                F_{7}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{8}\! \left(x , y_{0}\right)\\
                
                F_{8}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{143}\! \left(x , y_{0}\right)+F_{89}\! \left(x , y_{0}\right)+F_{9}\! \left(x , y_{0}\right)+F_{91}\! \left(x , y_{0}\right)\\
                
                F_{9}\! \left(x , y_{0}\right) &= F_{10}\! \left(x , 1, y_{0}\right)\\
                
                F_{10}\! \left(x , y_{0}, y_{1}\right) &= F_{11}\! \left(x , y_{0}, y_{1}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{11}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{12}\! \left(x , y_{0}, y_{1}\right)+F_{12}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{12}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x , y_{0}, y_{1}\right)+F_{15}\! \left(x , y_{0}, y_{1}\right)+F_{47}\! \left(x , y_{1}\right)\\
                
                F_{13}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{0}, y_{1}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{14}\! \left(x , y_{0}\right) &= y_{0} x\\
                
                F_{15}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{16}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{16}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{1}\right)+F_{31}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{17}\! \left(x , y_{0}\right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x , y_{0}\right)\\
                
                F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
                
                F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
                
                F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{21}\! \left(x \right) &= x\\
                
                F_{22}\! \left(x , y_{0}\right) &= F_{23}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{23}\! \left(x , y_{0}\right) &= F_{24}\! \left(x , y_{0}\right)\\
                
                F_{24}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{25}\! \left(x , y_{0}\right)\\
                
                F_{25}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x , y_{0}\right)\\
                
                F_{26}\! \left(x , y_{0}\right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x , y_{0}\right)+F_{30}\! \left(x , y_{0}\right)\\
                
                F_{27}\! \left(x \right) &= 0\\
                
                F_{28}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{29}\! \left(x , y_{0}\right)\\
                
                F_{29}\! \left(x , y_{0}\right) &= F_{19}\! \left(x \right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{30}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{22}\! \left(x , y_{0}\right)\\
                
                F_{31}\! \left(x , y_{0}, y_{1}\right) &= F_{32}\! \left(x , y_{0}\right)+F_{36}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{32}\! \left(x , y_{0}\right) &= F_{23}\! \left(x , y_{0}\right)+F_{33}\! \left(x , y_{0}\right)\\
                
                F_{33}\! \left(x , y_{0}\right) &= F_{34}\! \left(x , y_{0}\right)\\
                
                F_{34}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{35}\! \left(x , y_{0}\right)\\
                
                F_{35}\! \left(x , y_{0}\right) &= F_{19}\! \left(x \right)+F_{33}\! \left(x , y_{0}\right)\\
                
                F_{36}\! \left(x , y_{0}, y_{1}\right) &= F_{37}\! \left(x , y_{0}, y_{1}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{37}\! \left(x , y_{0}, y_{1}\right) &= F_{27}\! \left(x \right)+F_{38}\! \left(x , y_{0}, y_{1}\right)+F_{40}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{38}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{39}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{39}\! \left(x , y_{0}, y_{1}\right) &= F_{23}\! \left(x , y_{1}\right)+F_{37}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{40}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{41}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{41}\! \left(x , y_{0}, y_{1}\right) &= F_{23}\! \left(x , y_{0}\right)+F_{37}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{42}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{27}\! \left(x \right)+F_{43}\! \left(x , y_{0}, y_{1}\right)+F_{45}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{43}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{44}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{44}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , y_{1}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{45}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{46}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{46}\! \left(x , y_{0}, y_{1}\right) &= F_{33}\! \left(x , y_{0}\right)+F_{42}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{47}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{48}\! \left(x , y_{0}\right)\\
                
                F_{48}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{49}\! \left(x , y_{0}\right)+F_{69}\! \left(x , y_{0}\right)+F_{72}\! \left(x , y_{0}\right)\\
                
                F_{49}\! \left(x , y_{0}\right) &= F_{50}\! \left(x , y_{0}, 1\right)\\
                
                F_{50}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{51}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{51}\! \left(x , y_{0}, y_{1}\right) &= F_{52}\! \left(x , y_{0}, 1, y_{1}\right)\\
                
                F_{52}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{53}\! \left(x , y_{0} y_{1}, y_{1}, y_{2}\right)\\
                
                F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{1}\! \left(x \right)+F_{54}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{55}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{57}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{54}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{0}\right) F_{53}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{55}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{1}\right) F_{56}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{56}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= -\frac{y_{1} F_{52}\! \left(x , 1, y_{1}, y_{2}\right)-y_{0} F_{52}\! \left(x , \frac{y_{0}}{y_{1}}, y_{1}, y_{2}\right)}{-y_{1}+y_{0}}\\
                
                F_{57}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{2}\right) F_{58}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{58}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{59}\! \left(x , y_{1}, y_{2}\right)+F_{60}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{59}\! \left(x , y_{0}, y_{1}\right) &= F_{25}\! \left(x , y_{1}\right)+F_{41}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{60}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{41}\! \left(x , y_{0}, y_{2}\right)+F_{61}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{61}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{62}\! \left(x , y_{0}, y_{1}\right)+F_{65}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{62}\! \left(x , y_{0}, y_{1}\right) &= F_{63}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{63}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{64}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{64}\! \left(x , y_{0}, y_{1}\right) &= F_{23}\! \left(x , y_{0}\right)+F_{62}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{65}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= 2 F_{27}\! \left(x \right)+F_{66}\! \left(x , y_{0}, y_{1}, y_{2}\right)+F_{68}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{66}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{1}\right) F_{67}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{67}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{37}\! \left(x , y_{0}, y_{2}\right)+F_{65}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{68}\! \left(x , y_{0}, y_{1}, y_{2}\right) &= F_{14}\! \left(x , y_{2}\right) F_{61}\! \left(x , y_{0}, y_{1}, y_{2}\right)\\
                
                F_{69}\! \left(x , y_{0}\right) &= F_{70}\! \left(x , y_{0}, 1\right)\\
                
                F_{70}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{71}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{71}\! \left(x , y_{0}, y_{1}\right) &= F_{56}\! \left(x , y_{0}, y_{1}, 1\right)\\
                
                F_{72}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{73}\! \left(x , y_{0}\right)\\
                
                F_{73}\! \left(x , y_{0}\right) &= F_{74}\! \left(x \right)+F_{80}\! \left(x , y_{0}\right)\\
                
                F_{74}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{75}\! \left(x \right)\\
                
                F_{75}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{76}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{77}\! \left(x \right)+F_{79}\! \left(x \right)\\
                
                F_{77}\! \left(x \right) &= F_{21}\! \left(x \right) F_{78}\! \left(x \right)\\
                
                F_{78}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{79}\! \left(x \right) &= F_{21}\! \left(x \right) F_{75}\! \left(x \right)\\
                
                F_{80}\! \left(x , y_{0}\right) &= F_{22}\! \left(x , y_{0}\right)+F_{81}\! \left(x , y_{0}\right)\\
                
                F_{81}\! \left(x , y_{0}\right) &= F_{82}\! \left(x , y_{0}\right)+F_{85}\! \left(x , y_{0}\right)\\
                
                F_{82}\! \left(x , y_{0}\right) &= F_{83}\! \left(x , y_{0}\right)\\
                
                F_{83}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{84}\! \left(x , y_{0}\right)\\
                
                F_{84}\! \left(x , y_{0}\right) &= F_{23}\! \left(x , y_{0}\right)+F_{82}\! \left(x , y_{0}\right)\\
                
                F_{85}\! \left(x , y_{0}\right) &= 2 F_{27}\! \left(x \right)+F_{86}\! \left(x , y_{0}\right)+F_{88}\! \left(x , y_{0}\right)\\
                
                F_{86}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{87}\! \left(x , y_{0}\right)\\
                
                F_{87}\! \left(x , y_{0}\right) &= F_{26}\! \left(x , y_{0}\right)+F_{85}\! \left(x , y_{0}\right)\\
                
                F_{88}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{81}\! \left(x , y_{0}\right)\\
                
                F_{89}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{90}\! \left(x , y_{0}\right)\\
                
                F_{90}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{8}\! \left(x , y_{0}\right)+F_{8}\! \left(x , 1\right)}{-1+y_{0}}\\
                
                F_{91}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{92}\! \left(x , y_{0}\right)\\
                
                F_{92}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{140}\! \left(x , y_{0}\right)+F_{142}\! \left(x , y_{0}\right)+F_{91}\! \left(x , y_{0}\right)+F_{93}\! \left(x , y_{0}\right)\\
                
                F_{93}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{94}\! \left(x , y_{0}\right)\\
                
                F_{94}\! \left(x , y_{0}\right) &= F_{105}\! \left(x , y_{0}\right)+F_{95}\! \left(x , y_{0}\right)\\
                
                F_{95}\! \left(x , y_{0}\right) &= F_{17}\! \left(x , y_{0}\right)+F_{96}\! \left(x , y_{0}\right)\\
                
                F_{96}\! \left(x , y_{0}\right) &= F_{75}\! \left(x \right)+F_{97}\! \left(x , y_{0}\right)\\
                
                F_{97}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right)+F_{98}\! \left(x , y_{0}\right)\\
                
                F_{98}\! \left(x , y_{0}\right) &= F_{99}\! \left(x , y_{0}\right)\\
                
                F_{99}\! \left(x , y_{0}\right) &= F_{100}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{100}\! \left(x , y_{0}\right) &= F_{19}\! \left(x \right)+F_{98}\! \left(x , y_{0}\right)\\
                
                F_{101}\! \left(x , y_{0}\right) &= 2 F_{27}\! \left(x \right)+F_{102}\! \left(x , y_{0}\right)+F_{104}\! \left(x , y_{0}\right)\\
                
                F_{102}\! \left(x , y_{0}\right) &= F_{103}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{103}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right)+F_{76}\! \left(x \right)\\
                
                F_{104}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{97}\! \left(x , y_{0}\right)\\
                
                F_{105}\! \left(x , y_{0}\right) &= F_{106}\! \left(x , y_{0}\right)+F_{122}\! \left(x , y_{0}\right)\\
                
                F_{106}\! \left(x , y_{0}\right) &= F_{107}\! \left(x \right)+F_{111}\! \left(x , y_{0}\right)\\
                
                F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{19}\! \left(x \right)\\
                
                F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
                
                F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{110}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{19}\! \left(x \right)\\
                
                F_{111}\! \left(x , y_{0}\right) &= F_{112}\! \left(x , y_{0}\right)+F_{117}\! \left(x , y_{0}\right)\\
                
                F_{112}\! \left(x , y_{0}\right) &= F_{113}\! \left(x , y_{0}\right)+F_{115}\! \left(x , y_{0}\right)+F_{27}\! \left(x \right)\\
                
                F_{113}\! \left(x , y_{0}\right) &= F_{114}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{114}\! \left(x , y_{0}\right) &= F_{112}\! \left(x , y_{0}\right)+F_{23}\! \left(x , y_{0}\right)\\
                
                F_{115}\! \left(x , y_{0}\right) &= F_{116}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{116}\! \left(x , y_{0}\right) &= F_{112}\! \left(x , y_{0}\right)+F_{19}\! \left(x \right)\\
                
                F_{117}\! \left(x , y_{0}\right) &= 2 F_{27}\! \left(x \right)+F_{118}\! \left(x , y_{0}\right)+F_{120}\! \left(x , y_{0}\right)\\
                
                F_{118}\! \left(x , y_{0}\right) &= F_{119}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{119}\! \left(x , y_{0}\right) &= F_{117}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{120}\! \left(x , y_{0}\right) &= F_{121}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{121}\! \left(x , y_{0}\right) &= F_{108}\! \left(x \right)+F_{117}\! \left(x , y_{0}\right)\\
                
                F_{122}\! \left(x , y_{0}\right) &= F_{123}\! \left(x \right)+F_{129}\! \left(x , y_{0}\right)\\
                
                F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{124}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{125}\! \left(x \right)+F_{127}\! \left(x \right)\\
                
                F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{126}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{127}\! \left(x \right) &= F_{128}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{128}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{124}\! \left(x \right)\\
                
                F_{129}\! \left(x , y_{0}\right) &= F_{130}\! \left(x , y_{0}\right)+F_{135}\! \left(x , y_{0}\right)\\
                
                F_{130}\! \left(x , y_{0}\right) &= 2 F_{27}\! \left(x \right)+F_{131}\! \left(x , y_{0}\right)+F_{133}\! \left(x , y_{0}\right)\\
                
                F_{131}\! \left(x , y_{0}\right) &= F_{132}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{132}\! \left(x , y_{0}\right) &= F_{130}\! \left(x , y_{0}\right)+F_{98}\! \left(x , y_{0}\right)\\
                
                F_{133}\! \left(x , y_{0}\right) &= F_{134}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{134}\! \left(x , y_{0}\right) &= F_{130}\! \left(x , y_{0}\right)+F_{76}\! \left(x \right)\\
                
                F_{135}\! \left(x , y_{0}\right) &= 3 F_{27}\! \left(x \right)+F_{136}\! \left(x , y_{0}\right)+F_{138}\! \left(x , y_{0}\right)\\
                
                F_{136}\! \left(x , y_{0}\right) &= F_{137}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{137}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right)+F_{135}\! \left(x , y_{0}\right)\\
                
                F_{138}\! \left(x , y_{0}\right) &= F_{139}\! \left(x , y_{0}\right) F_{14}\! \left(x , y_{0}\right)\\
                
                F_{139}\! \left(x , y_{0}\right) &= F_{124}\! \left(x \right)+F_{135}\! \left(x , y_{0}\right)\\
                
                F_{140}\! \left(x , y_{0}\right) &= F_{141}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{141}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{92}\! \left(x , y_{0}\right)+F_{92}\! \left(x , 1\right)}{-1+y_{0}}\\
                
                F_{142}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{95}\! \left(x , y_{0}\right)\\
                
                F_{143}\! \left(x , y_{0}\right) &= F_{144}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{144}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{145}\! \left(x , y_{0}\right)+F_{146}\! \left(x , y_{0}\right)+F_{182}\! \left(x , y_{0}\right)+F_{49}\! \left(x , y_{0}\right)\\
                
                F_{145}\! \left(x , y_{0}\right) &= F_{144}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{146}\! \left(x , y_{0}\right) &= F_{147}\! \left(x , 1, y_{0}\right)\\
                
                F_{147}\! \left(x , y_{0}, y_{1}\right) &= F_{148}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{148}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{149}\! \left(x , y_{0}, y_{1}\right)+F_{149}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{149}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{147}\! \left(x , y_{0}, y_{1}\right)+F_{150}\! \left(x , y_{0}, y_{1}\right)+F_{151}\! \left(x , y_{0}, y_{1}\right)+F_{49}\! \left(x , y_{1}\right)\\
                
                F_{150}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{149}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{151}\! \left(x , y_{0}, y_{1}\right) &= F_{152}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{152}\! \left(x , y_{0}, y_{1}\right) &= F_{153}\! \left(x , y_{0}, y_{1}\right)+F_{73}\! \left(x , y_{1}\right)\\
                
                F_{153}\! \left(x , y_{0}, y_{1}\right) &= F_{154}\! \left(x , y_{0}\right)+F_{161}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{154}\! \left(x , y_{0}\right) &= F_{155}\! \left(x , y_{0}\right)+F_{22}\! \left(x , y_{0}\right)\\
                
                F_{155}\! \left(x , y_{0}\right) &= F_{156}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{156}\! \left(x , y_{0}\right) &= F_{157}\! \left(x , y_{0}\right)+F_{159}\! \left(x , y_{0}\right)+F_{27}\! \left(x \right)+F_{88}\! \left(x , y_{0}\right)\\
                
                F_{157}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{158}\! \left(x , y_{0}\right)\\
                
                F_{158}\! \left(x , y_{0}\right) &= F_{156}\! \left(x , y_{0}\right)+F_{76}\! \left(x \right)\\
                
                F_{159}\! \left(x , y_{0}\right) &= F_{160}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{160}\! \left(x , y_{0}\right) &= F_{156}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{161}\! \left(x , y_{0}, y_{1}\right) &= F_{162}\! \left(x , y_{0}, y_{1}\right)+F_{167}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{162}\! \left(x , y_{0}, y_{1}\right) &= F_{163}\! \left(x , y_{0}, y_{1}\right)+F_{62}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{163}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{27}\! \left(x \right)+F_{164}\! \left(x , y_{0}, y_{1}\right)+F_{166}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{164}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{165}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{165}\! \left(x , y_{0}, y_{1}\right) &= F_{163}\! \left(x , y_{0}, y_{1}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{166}\! \left(x , y_{0}, y_{1}\right) &= F_{162}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{167}\! \left(x , y_{0}, y_{1}\right) &= F_{168}\! \left(x , y_{0}, y_{1}\right)+F_{171}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{168}\! \left(x , y_{0}, y_{1}\right) &= F_{169}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{169}\! \left(x , y_{0}, y_{1}\right) &= F_{170}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{170}\! \left(x , y_{0}, y_{1}\right) &= F_{168}\! \left(x , y_{0}, y_{1}\right)+F_{62}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{171}\! \left(x , y_{0}, y_{1}\right) &= 3 F_{27}\! \left(x \right)+F_{172}\! \left(x , y_{0}, y_{1}\right)+F_{174}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{172}\! \left(x , y_{0}, y_{1}\right) &= F_{173}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{173}\! \left(x , y_{0}, y_{1}\right) &= F_{163}\! \left(x , y_{0}, y_{1}\right)+F_{171}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{174}\! \left(x , y_{0}, y_{1}\right) &= F_{175}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{175}\! \left(x , y_{0}, y_{1}\right) &= F_{176}\! \left(x , y_{0}, y_{1}\right)+F_{179}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{176}\! \left(x , y_{0}, y_{1}\right) &= F_{177}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{177}\! \left(x , y_{0}, y_{1}\right) &= F_{178}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{178}\! \left(x , y_{0}, y_{1}\right) &= F_{176}\! \left(x , y_{0}, y_{1}\right)+F_{62}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{179}\! \left(x , y_{0}, y_{1}\right) &= 3 F_{27}\! \left(x \right)+F_{174}\! \left(x , y_{0}, y_{1}\right)+F_{180}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{180}\! \left(x , y_{0}, y_{1}\right) &= F_{181}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{181}\! \left(x , y_{0}, y_{1}\right) &= F_{163}\! \left(x , y_{0}, y_{1}\right)+F_{179}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{182}\! \left(x , y_{0}\right) &= F_{183}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{183}\! \left(x , y_{0}\right) &= F_{184}\! \left(x , y_{0}\right)+F_{73}\! \left(x , y_{0}\right)\\
                
                F_{184}\! \left(x , y_{0}\right) &= F_{185}\! \left(x \right)+F_{200}\! \left(x , y_{0}\right)\\
                
                F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)+F_{75}\! \left(x \right)\\
                
                F_{186}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{190}\! \left(x \right)+F_{192}\! \left(x \right)+F_{27}\! \left(x \right)\\
                
                F_{188}\! \left(x \right) &= F_{189}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{189}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{190}\! \left(x \right) &= F_{191}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{191}\! \left(x \right) &= F_{187}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{192}\! \left(x \right) &= F_{193}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{193}\! \left(x \right) &= F_{194}\! \left(x \right)+F_{197}\! \left(x \right)\\
                
                F_{194}\! \left(x \right) &= F_{195}\! \left(x \right)\\
                
                F_{195}\! \left(x \right) &= F_{196}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{196}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{194}\! \left(x \right)\\
                
                F_{197}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{192}\! \left(x \right)+F_{198}\! \left(x \right)\\
                
                F_{198}\! \left(x \right) &= F_{199}\! \left(x \right) F_{21}\! \left(x \right)\\
                
                F_{199}\! \left(x \right) &= F_{197}\! \left(x \right)+F_{76}\! \left(x \right)\\
                
                F_{200}\! \left(x , y_{0}\right) &= F_{201}\! \left(x , y_{0}\right)+F_{97}\! \left(x , y_{0}\right)\\
                
                F_{201}\! \left(x , y_{0}\right) &= F_{202}\! \left(x , y_{0}\right)+F_{205}\! \left(x , y_{0}\right)\\
                
                F_{202}\! \left(x , y_{0}\right) &= F_{203}\! \left(x , y_{0}\right)\\
                
                F_{203}\! \left(x , y_{0}\right) &= F_{204}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{204}\! \left(x , y_{0}\right) &= F_{202}\! \left(x , y_{0}\right)+F_{98}\! \left(x , y_{0}\right)\\
                
                F_{205}\! \left(x , y_{0}\right) &= 3 F_{27}\! \left(x \right)+F_{206}\! \left(x , y_{0}\right)+F_{208}\! \left(x , y_{0}\right)\\
                
                F_{206}\! \left(x , y_{0}\right) &= F_{207}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{207}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right)+F_{205}\! \left(x , y_{0}\right)\\
                
                F_{208}\! \left(x , y_{0}\right) &= F_{209}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{209}\! \left(x , y_{0}\right) &= F_{210}\! \left(x , y_{0}\right)+F_{213}\! \left(x , y_{0}\right)\\
                
                F_{210}\! \left(x , y_{0}\right) &= F_{211}\! \left(x , y_{0}\right)\\
                
                F_{211}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{212}\! \left(x , y_{0}\right)\\
                
                F_{212}\! \left(x , y_{0}\right) &= F_{210}\! \left(x , y_{0}\right)+F_{98}\! \left(x , y_{0}\right)\\
                
                F_{213}\! \left(x , y_{0}\right) &= 3 F_{27}\! \left(x \right)+F_{208}\! \left(x , y_{0}\right)+F_{214}\! \left(x , y_{0}\right)\\
                
                F_{214}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{215}\! \left(x , y_{0}\right)\\
                
                F_{215}\! \left(x , y_{0}\right) &= F_{101}\! \left(x , y_{0}\right)+F_{213}\! \left(x , y_{0}\right)\\
                
                F_{216}\! \left(x , y_{0}\right) &= F_{217}\! \left(x , 1, y_{0}\right)\\
                
                F_{217}\! \left(x , y_{0}, y_{1}\right) &= F_{12}\! \left(x , y_{0}, y_{1}\right) F_{14}\! \left(x , y_{1}\right)\\
                
                F_{218}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{219}\! \left(x , y_{0}\right)\\
                
                F_{219}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{220}\! \left(x , y_{0}\right)+F_{222}\! \left(x , y_{0}\right)+F_{226}\! \left(x , y_{0}\right)+F_{227}\! \left(x , y_{0}\right)\\
                
                F_{220}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{221}\! \left(x , y_{0}\right)\\
                
                F_{221}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{219}\! \left(x , y_{0}\right)+F_{219}\! \left(x , 1\right)}{-1+y_{0}}\\
                
                F_{222}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{223}\! \left(x , y_{0}\right)\\
                
                F_{223}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{142}\! \left(x , y_{0}\right)+F_{222}\! \left(x , y_{0}\right)+F_{224}\! \left(x , y_{0}\right)\\
                
                F_{224}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{225}\! \left(x , y_{0}\right)\\
                
                F_{225}\! \left(x , y_{0}\right) &= -\frac{-y_{0} F_{223}\! \left(x , y_{0}\right)+F_{223}\! \left(x , 1\right)}{-1+y_{0}}\\
                
                F_{226}\! \left(x , y_{0}\right) &= F_{183}\! \left(x , y_{0}\right) F_{21}\! \left(x \right)\\
                
                F_{227}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{228}\! \left(x , y_{0}\right)\\
                
                F_{228}\! \left(x , y_{0}\right) &= F_{148}\! \left(x , 1, y_{0}\right)\\
                
                F_{229}\! \left(x \right) &= F_{21}\! \left(x \right) F_{230}\! \left(x \right)\\
                
                F_{230}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{231}\! \left(x \right)+F_{232}\! \left(x \right)+F_{369}\! \left(x \right)\\
                
                F_{231}\! \left(x \right) &= F_{21}\! \left(x \right) F_{230}\! \left(x \right)\\
                
                F_{232}\! \left(x \right) &= F_{21}\! \left(x \right) F_{233}\! \left(x \right)\\
                
                F_{233}\! \left(x \right) &= F_{234}\! \left(x , 1\right)\\
                
                F_{234}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{231}\! \left(x \right)+F_{235}\! \left(x , y_{0}\right)+F_{363}\! \left(x , y_{0}\right)+F_{366}\! \left(x , y_{0}\right)\\
                
                F_{235}\! \left(x , y_{0}\right) &= F_{236}\! \left(x , y_{0}, 1\right)\\
                
                F_{236}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{237}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{237}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{238}\! \left(x , y_{0}\right)+F_{284}\! \left(x , y_{0}, y_{1}\right)+F_{286}\! \left(x , y_{0}, y_{1}\right)+F_{353}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{238}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{239}\! \left(x , y_{0}\right)\\
                
                F_{239}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{238}\! \left(x , y_{0}\right)+F_{240}\! \left(x , y_{0}\right)+F_{259}\! \left(x , y_{0}\right)\\
                
                F_{240}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{241}\! \left(x , y_{0}\right)\\
                
                F_{241}\! \left(x , y_{0}\right) &= F_{242}\! \left(x , y_{0}\right)+F_{74}\! \left(x \right)\\
                
                F_{242}\! \left(x , y_{0}\right) &= F_{22}\! \left(x , y_{0}\right)+F_{243}\! \left(x , y_{0}\right)\\
                
                F_{243}\! \left(x , y_{0}\right) &= F_{244}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{244}\! \left(x , y_{0}\right) &= F_{245}\! \left(x , y_{0}\right)+F_{247}\! \left(x , y_{0}\right)+F_{249}\! \left(x , y_{0}\right)+F_{27}\! \left(x \right)\\
                
                F_{245}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{246}\! \left(x , y_{0}\right)\\
                
                F_{246}\! \left(x , y_{0}\right) &= F_{244}\! \left(x , y_{0}\right)+F_{76}\! \left(x \right)\\
                
                F_{247}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{248}\! \left(x , y_{0}\right)\\
                
                F_{248}\! \left(x , y_{0}\right) &= F_{244}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{249}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{250}\! \left(x , y_{0}\right)\\
                
                F_{250}\! \left(x , y_{0}\right) &= F_{251}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{251}\! \left(x , y_{0}\right) &= F_{249}\! \left(x , y_{0}\right)+F_{252}\! \left(x , y_{0}\right)+F_{257}\! \left(x , y_{0}\right)+F_{27}\! \left(x \right)\\
                
                F_{252}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{253}\! \left(x , y_{0}\right)\\
                
                F_{253}\! \left(x , y_{0}\right) &= F_{194}\! \left(x \right)+F_{254}\! \left(x , y_{0}\right)\\
                
                F_{254}\! \left(x , y_{0}\right) &= 2 F_{27}\! \left(x \right)+F_{252}\! \left(x , y_{0}\right)+F_{255}\! \left(x , y_{0}\right)\\
                
                F_{255}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{256}\! \left(x , y_{0}\right)\\
                
                F_{256}\! \left(x , y_{0}\right) &= F_{254}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{257}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{258}\! \left(x , y_{0}\right)\\
                
                F_{258}\! \left(x , y_{0}\right) &= F_{251}\! \left(x , y_{0}\right)+F_{26}\! \left(x , y_{0}\right)\\
                
                F_{259}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{260}\! \left(x , y_{0}\right)\\
                
                F_{260}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{261}\! \left(x , y_{0}\right)+F_{262}\! \left(x , y_{0}\right)+F_{263}\! \left(x , y_{0}\right)+F_{264}\! \left(x , y_{0}\right)\\
                
                F_{261}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{260}\! \left(x , y_{0}\right)\\
                
                F_{262}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{260}\! \left(x , y_{0}\right)\\
                
                F_{263}\! \left(x , y_{0}\right) &= F_{147}\! \left(x , y_{0}, 1\right)\\
                
                F_{264}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{265}\! \left(x , y_{0}\right)\\
                
                F_{265}\! \left(x , y_{0}\right) &= F_{266}\! \left(x \right)+F_{268}\! \left(x , y_{0}\right)\\
                
                F_{266}\! \left(x \right) &= F_{267}\! \left(x \right)+F_{74}\! \left(x \right)\\
                
                F_{267}\! \left(x \right) &= F_{193}\! \left(x \right)+F_{75}\! \left(x \right)\\
                
                F_{268}\! \left(x , y_{0}\right) &= F_{154}\! \left(x , y_{0}\right)+F_{269}\! \left(x , y_{0}\right)\\
                
                F_{269}\! \left(x , y_{0}\right) &= F_{155}\! \left(x , y_{0}\right)+F_{270}\! \left(x , y_{0}\right)\\
                
                F_{270}\! \left(x , y_{0}\right) &= F_{254}\! \left(x , y_{0}\right)+F_{271}\! \left(x , y_{0}\right)\\
                
                F_{271}\! \left(x , y_{0}\right) &= 2 F_{27}\! \left(x \right)+F_{272}\! \left(x , y_{0}\right)+F_{274}\! \left(x , y_{0}\right)+F_{276}\! \left(x , y_{0}\right)\\
                
                F_{272}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{273}\! \left(x , y_{0}\right)\\
                
                F_{273}\! \left(x , y_{0}\right) &= F_{197}\! \left(x \right)+F_{271}\! \left(x , y_{0}\right)\\
                
                F_{274}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{275}\! \left(x , y_{0}\right)\\
                
                F_{275}\! \left(x , y_{0}\right) &= F_{156}\! \left(x , y_{0}\right)+F_{271}\! \left(x , y_{0}\right)\\
                
                F_{276}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{277}\! \left(x , y_{0}\right)\\
                
                F_{277}\! \left(x , y_{0}\right) &= F_{278}\! \left(x , y_{0}\right)+F_{281}\! \left(x , y_{0}\right)\\
                
                F_{278}\! \left(x , y_{0}\right) &= F_{279}\! \left(x , y_{0}\right)\\
                
                F_{279}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{280}\! \left(x , y_{0}\right)\\
                
                F_{280}\! \left(x , y_{0}\right) &= F_{278}\! \left(x , y_{0}\right)+F_{82}\! \left(x , y_{0}\right)\\
                
                F_{281}\! \left(x , y_{0}\right) &= 3 F_{27}\! \left(x \right)+F_{276}\! \left(x , y_{0}\right)+F_{282}\! \left(x , y_{0}\right)\\
                
                F_{282}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{283}\! \left(x , y_{0}\right)\\
                
                F_{283}\! \left(x , y_{0}\right) &= F_{281}\! \left(x , y_{0}\right)+F_{85}\! \left(x , y_{0}\right)\\
                
                F_{284}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{285}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{285}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{239}\! \left(x , y_{0}\right)-y_{1} F_{239}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\
                
                F_{286}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{287}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{287}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{288}\! \left(x , y_{0}\right)-y_{1} F_{288}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\
                
                F_{288}\! \left(x , y_{0}\right) &= F_{289}\! \left(x , y_{0}, 1\right)\\
                
                F_{289}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{290}\! \left(x , y_{0}, y_{1}\right)+F_{291}\! \left(x , y_{0}, y_{1}\right)+F_{293}\! \left(x , y_{0}, y_{1}\right)+F_{312}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{290}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{289}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{291}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{292}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{292}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{289}\! \left(x , y_{0}, y_{1}\right)+F_{289}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{293}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{294}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{294}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{295}\! \left(x , y_{0}, y_{1}\right)+F_{295}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{295}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{296}\! \left(x , y_{0}, y_{1}\right)+F_{297}\! \left(x , y_{0}, y_{1}\right)+F_{298}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{296}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{295}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{297}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{295}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{298}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{299}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{299}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{300}\! \left(x , y_{0}, y_{1}\right)+F_{300}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{300}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{301}\! \left(x , y_{0}, y_{1}\right)+F_{302}\! \left(x , y_{0}, y_{1}\right)+F_{311}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{301}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{300}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{302}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{303}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{303}\! \left(x , y_{0}, y_{1}\right) &= F_{17}\! \left(x , y_{1}\right)+F_{304}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{304}\! \left(x , y_{0}, y_{1}\right) &= F_{22}\! \left(x , y_{0}\right)+F_{305}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{305}\! \left(x , y_{0}, y_{1}\right) &= F_{306}\! \left(x , y_{0}, y_{1}\right)+F_{37}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{306}\! \left(x , y_{0}, y_{1}\right) &= F_{166}\! \left(x , y_{0}, y_{1}\right)+F_{27}\! \left(x \right)+F_{307}\! \left(x , y_{0}, y_{1}\right)+F_{309}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{307}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{308}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{308}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , y_{1}\right)+F_{306}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{309}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{310}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{310}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , y_{0}\right)+F_{306}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{311}\! \left(x , y_{0}, y_{1}\right) &= F_{149}\! \left(x , y_{0}, y_{1}\right) F_{21}\! \left(x \right)\\
                
                F_{312}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{313}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{313}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{314}\! \left(x , y_{0}, y_{1}\right)+F_{314}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{314}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{315}\! \left(x , y_{0}, y_{1}\right)+F_{317}\! \left(x , y_{0}, y_{1}\right)+F_{319}\! \left(x , y_{0}, y_{1}\right)+F_{351}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{315}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{316}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{316}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{300}\! \left(x , y_{0}, y_{1}\right)+F_{300}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{317}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{318}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{318}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{314}\! \left(x , y_{0}, y_{1}\right)+F_{314}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{319}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{320}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{320}\! \left(x , y_{0}, y_{1}\right) &= F_{1}\! \left(x \right)+F_{319}\! \left(x , y_{0}, y_{1}\right)+F_{321}\! \left(x , y_{0}, y_{1}\right)+F_{344}\! \left(x , y_{0}, y_{1}\right)+F_{346}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{321}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{322}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{322}\! \left(x , y_{0}, y_{1}\right) &= F_{323}\! \left(x , y_{0}, y_{1}\right)+F_{95}\! \left(x , y_{1}\right)\\
                
                F_{323}\! \left(x , y_{0}, y_{1}\right) &= F_{304}\! \left(x , y_{0}, y_{1}\right)+F_{324}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{324}\! \left(x , y_{0}, y_{1}\right) &= F_{155}\! \left(x , y_{0}\right)+F_{325}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{325}\! \left(x , y_{0}, y_{1}\right) &= F_{326}\! \left(x , y_{0}, y_{1}\right)+F_{331}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{326}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{27}\! \left(x \right)+F_{327}\! \left(x , y_{0}, y_{1}\right)+F_{329}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{327}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{328}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{328}\! \left(x , y_{0}, y_{1}\right) &= F_{326}\! \left(x , y_{0}, y_{1}\right)+F_{98}\! \left(x , y_{1}\right)\\
                
                F_{329}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{330}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{330}\! \left(x , y_{0}, y_{1}\right) &= F_{26}\! \left(x , y_{0}\right)+F_{326}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{331}\! \left(x , y_{0}, y_{1}\right) &= 2 F_{27}\! \left(x \right)+F_{332}\! \left(x , y_{0}, y_{1}\right)+F_{334}\! \left(x , y_{0}, y_{1}\right)+F_{336}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{332}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{0}\right) F_{333}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{333}\! \left(x , y_{0}, y_{1}\right) &= F_{101}\! \left(x , y_{1}\right)+F_{331}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{334}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{335}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{335}\! \left(x , y_{0}, y_{1}\right) &= F_{156}\! \left(x , y_{0}\right)+F_{331}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{336}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{337}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{337}\! \left(x , y_{0}, y_{1}\right) &= F_{338}\! \left(x , y_{0}, y_{1}\right)+F_{341}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{338}\! \left(x , y_{0}, y_{1}\right) &= F_{339}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{339}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{340}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{340}\! \left(x , y_{0}, y_{1}\right) &= F_{338}\! \left(x , y_{0}, y_{1}\right)+F_{82}\! \left(x , y_{0}\right)\\
                
                F_{341}\! \left(x , y_{0}, y_{1}\right) &= 3 F_{27}\! \left(x \right)+F_{336}\! \left(x , y_{0}, y_{1}\right)+F_{342}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{342}\! \left(x , y_{0}, y_{1}\right) &= F_{14}\! \left(x , y_{1}\right) F_{343}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{343}\! \left(x , y_{0}, y_{1}\right) &= F_{341}\! \left(x , y_{0}, y_{1}\right)+F_{85}\! \left(x , y_{0}\right)\\
                
                F_{344}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{345}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{345}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{1} F_{320}\! \left(x , y_{0}, y_{1}\right)+F_{320}\! \left(x , y_{0}, 1\right)}{-1+y_{1}}\\
                
                F_{346}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{347}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{347}\! \left(x , y_{0}, y_{1}\right) &= F_{348}\! \left(x , y_{0}, y_{1}\right)+F_{95}\! \left(x , y_{1}\right)\\
                
                F_{348}\! \left(x , y_{0}, y_{1}\right) &= F_{349}\! \left(x , y_{0}, y_{1}\right)+F_{350}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{349}\! \left(x , y_{0}, y_{1}\right) &= F_{162}\! \left(x , y_{0}, y_{1}\right)+F_{22}\! \left(x , y_{0}\right)\\
                
                F_{350}\! \left(x , y_{0}, y_{1}\right) &= F_{337}\! \left(x , y_{0}, y_{1}\right)+F_{81}\! \left(x , y_{0}\right)\\
                
                F_{351}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{352}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{352}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{149}\! \left(x , y_{0}, y_{1}\right)+F_{149}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{353}\! \left(x , y_{0}, y_{1}\right) &= F_{21}\! \left(x \right) F_{354}\! \left(x , y_{0}, y_{1}\right)\\
                
                F_{354}\! \left(x , y_{0}, y_{1}\right) &= \frac{y_{0} F_{355}\! \left(x , y_{0}\right)-y_{1} F_{355}\! \left(x , y_{1}\right)}{-y_{1}+y_{0}}\\
                
                F_{355}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{356}\! \left(x , y_{0}\right)+F_{357}\! \left(x , y_{0}\right)+F_{359}\! \left(x , y_{0}\right)+F_{361}\! \left(x , y_{0}\right)\\
                
                F_{356}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{355}\! \left(x , y_{0}\right)\\
                
                F_{357}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{358}\! \left(x , y_{0}\right)\\
                
                F_{358}\! \left(x , y_{0}\right) &= F_{354}\! \left(x , y_{0}, 1\right)\\
                
                F_{359}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{360}\! \left(x , y_{0}\right)\\
                
                F_{360}\! \left(x , y_{0}\right) &= F_{352}\! \left(x , y_{0}, 1\right)\\
                
                F_{361}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{362}\! \left(x , y_{0}\right)\\
                
                F_{362}\! \left(x , y_{0}\right) &= F_{320}\! \left(x , y_{0}, 1\right)\\
                
                F_{363}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{364}\! \left(x , y_{0}\right)\\
                
                F_{364}\! \left(x , y_{0}\right) &= F_{365}\! \left(x , y_{0}, 1\right)\\
                
                F_{365}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{237}\! \left(x , y_{0}, y_{1}\right)+F_{237}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{366}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{367}\! \left(x , y_{0}\right)\\
                
                F_{367}\! \left(x , y_{0}\right) &= F_{368}\! \left(x , y_{0}, 1\right)\\
                
                F_{368}\! \left(x , y_{0}, y_{1}\right) &= -\frac{-y_{0} F_{314}\! \left(x , y_{0}, y_{1}\right)+F_{314}\! \left(x , 1, y_{1}\right)}{-1+y_{0}}\\
                
                F_{369}\! \left(x \right) &= F_{370}\! \left(x , 1\right)\\
                
                F_{370}\! \left(x , y_{0}\right) &= F_{21}\! \left(x \right) F_{371}\! \left(x , y_{0}\right)\\
                
                F_{371}\! \left(x , y_{0}\right) &= F_{1}\! \left(x \right)+F_{372}\! \left(x , y_{0}\right)+F_{374}\! \left(x , y_{0}\right)+F_{375}\! \left(x , y_{0}\right)+F_{376}\! \left(x , y_{0}\right)\\
                
                F_{372}\! \left(x , y_{0}\right) &= F_{14}\! \left(x , y_{0}\right) F_{373}\! \left(x , y_{0}\right)\\
                
                F_{373}\! \left(x , y_{0}\right) &= F_{299}\! \left(x , y_{0}, 1\right)\\
                
                F_{374}\! \left(x , y_{0}\right) &= F_{317}\! \left(x , y_{0}, 1\right)\\
                
                F_{375}\! \left(x , y_{0}\right) &= F_{319}\! \left(x , y_{0}, 1\right)\\
                
                F_{376}\! \left(x , y_{0}\right) &= F_{351}\! \left(x , y_{0}, 1\right)\\
                
                \end{align*}\)