Av(1234, 2143, 2413, 3142)
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(x^{3}+2 x -1\right)}{\left(-1+3 x \right) \left(x^{2}-x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 186, 556, 1666, 4998, 14996, 44990, 134970, 404908, 1214722, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(-1+3 x \right) \left(x^{2}-x +1\right) F \! \left(x \right)+\left(x -1\right) \left(x^{3}+2 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = 3 a \! \left(n \right)-4 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = 3 a \! \left(n \right)-4 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(3 \,\mathrm{I} \sqrt{3}+27\right) \left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n}}{63}-\frac{\mathrm{I} \left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n} \sqrt{3}}{21}+\frac{16 \,3^{n}}{63}+\\\frac{3 \left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n}}{7} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 99 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 99 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{27}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{27}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{43}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{48}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{48}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{66}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{57}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{55}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{43}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{85}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{85}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{94}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{91}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= 2 F_{15}\! \left(x \right)+F_{90}\! \left(x \right)+F_{95}\! \left(x \right)\\
\end{align*}\)