Av(1234, 1432, 3241, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{17}+10 x^{16}+48 x^{15}+99 x^{14}+65 x^{13}-65 x^{12}-183 x^{11}-153 x^{10}-48 x^{9}+7 x^{8}+76 x^{7}+31 x^{6}-8 x^{5}-6 x^{4}-x^{3}+2 x -1}{\left(x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 56, 108, 173, 343, 714, 1511, 3228, 6930, 14928, 32260, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x -1\right) \left(x^{3}+x^{2}+x -1\right) \left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right) F \! \left(x \right)+x^{17}+10 x^{16}+48 x^{15}+99 x^{14}+65 x^{13}-65 x^{12}-183 x^{11}-153 x^{10}-48 x^{9}+7 x^{8}+76 x^{7}+31 x^{6}-8 x^{5}-6 x^{4}-x^{3}+2 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 108\)
\(\displaystyle a \! \left(7\right) = 173\)
\(\displaystyle a \! \left(8\right) = 343\)
\(\displaystyle a \! \left(9\right) = 714\)
\(\displaystyle a \! \left(10\right) = 1511\)
\(\displaystyle a \! \left(11\right) = 3228\)
\(\displaystyle a \! \left(12\right) = 6930\)
\(\displaystyle a \! \left(13\right) = 14928\)
\(\displaystyle a \! \left(14\right) = 32260\)
\(\displaystyle a \! \left(15\right) = 69903\)
\(\displaystyle a \! \left(16\right) = 151786\)
\(\displaystyle a \! \left(17\right) = 330157\)
\(\displaystyle a \! \left(n +8\right) = -a \! \left(n \right)-4 a \! \left(n +1\right)-6 a \! \left(n +2\right)-5 a \! \left(n +3\right)-a \! \left(n +4\right)+a \! \left(n +5\right)+a \! \left(n +6\right)+2 a \! \left(n +7\right)+126, \quad n \geq 18\)
Explicit Closed Form
\(\displaystyle \frac{6043420 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{7-n}\right)}{10777921}+\frac{4431045 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{6-n}\right)}{1959622}+\frac{75322811 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{5-n}\right)}{21555842}+\frac{65345407 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{4-n}\right)}{21555842}+\frac{7678802 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{3-n}\right)}{10777921}-\frac{7842271 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{2-n}\right)}{21555842}-\frac{4336848 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{10777921}-\frac{19886187 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{21555842}+\frac{13550575 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{9}+3 Z^{8}+2 Z^{7}-Z^{6}-4 Z^{5}-2 Z^{4}-Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{21555842}+\left(\left\{\begin{array}{cc}-9 & n =0 \\ -10 & n =1 \\ -11 & n =2\text{ or } n =3 \\ -7 & n =4 \\ 11 & n =5 \\ 25 & n =6 \\ 7 & n =7 \\ 1 & n =8 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 156 rules.

Found on January 18, 2022.

Finding the specification took 3 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 156 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{18}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{62}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{73}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{72}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{7}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{118}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{116}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{115}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{24}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{117}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{18}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{130}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= x^{2}\\ F_{130}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)+F_{18}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{137}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{149}\! \left(x \right)+F_{151}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{142}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{147}\! \left(x \right)+F_{18}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{145}\! \left(x \right) &= F_{146}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{146}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{148}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{149}\! \left(x \right) &= F_{150}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{150}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{151}\! \left(x \right) &= F_{152}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{152}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{153}\! \left(x \right)\\ F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\ F_{154}\! \left(x \right) &= F_{155}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{155}\! \left(x \right) &= F_{26}\! \left(x \right)\\ \end{align*}\)