Av(1234, 1432, 2143, 2431, 4132)
View Raw Data
Generating Function
\(\displaystyle -\frac{7 x^{10}-34 x^{9}+44 x^{8}-23 x^{6}+14 x^{5}-25 x^{4}+37 x^{3}-25 x^{2}+8 x -1}{\left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 121, 298, 745, 1882, 4788, 12243, 31428, 80934, 208985, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{2} F \! \left(x \right)+7 x^{10}-34 x^{9}+44 x^{8}-23 x^{6}+14 x^{5}-25 x^{4}+37 x^{3}-25 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 121\)
\(\displaystyle a \! \left(7\right) = 298\)
\(\displaystyle a \! \left(8\right) = 745\)
\(\displaystyle a \! \left(9\right) = 1882\)
\(\displaystyle a \! \left(10\right) = 4788\)
\(\displaystyle a \! \left(n +4\right) = -4 a \! \left(n \right)+16 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right)-2 n +7, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left(\left\{\begin{array}{cc}\frac{313}{64} & n =0 \\ \frac{43}{16} & n =1 \\ \frac{3}{16} & n =2 \\ -2 & n =3 \\ -\frac{7}{4} & n =4 \\ 0 & \text{otherwise} \end{array}\right.\right)+2 n -5+\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{10}-\frac{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n} \sqrt{5}}{10}+\frac{3 \,2^{n} n}{64}+\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{2}+\frac{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{2}+\frac{7 \,2^{n}}{64}\)

This specification was found using the strategy pack "Point Placements" and has 135 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 135 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= x^{2}\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{35}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{41}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{48}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{45}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{18}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{61}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{57}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{18}\! \left(x \right)+F_{79}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{79}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{73}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{95}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{105}\! \left(x \right)\\ F_{105}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{106}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{105}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{115}\! \left(x \right)+F_{18}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{113}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)\\ F_{114}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{110}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{117}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{100}\! \left(x \right)+F_{118}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{118}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{127}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{18}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{126}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{128}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{118}\! \left(x \right)+F_{129}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{133}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{131}\! \left(x \right)\\ \end{align*}\)