Av(1234, 1432, 2143, 2431, 3214)
Generating Function
\(\displaystyle -\frac{\left(x +1\right) \left(4 x^{7}+8 x^{6}+9 x^{5}+6 x^{4}+x^{2}-x +1\right)}{x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 48, 103, 221, 487, 1077, 2363, 5180, 11379, 25003, 54908, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{5}+3 x^{4}+2 x^{3}+x^{2}+x -1\right) F \! \left(x \right)+\left(x +1\right) \left(4 x^{7}+8 x^{6}+9 x^{5}+6 x^{4}+x^{2}-x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 48\)
\(\displaystyle a \! \left(6\right) = 103\)
\(\displaystyle a \! \left(7\right) = 221\)
\(\displaystyle a \! \left(8\right) = 487\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)+3 a \! \left(n +1\right)+2 a \! \left(n +2\right)+a \! \left(n +3\right)+a \! \left(4+n \right), \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 48\)
\(\displaystyle a \! \left(6\right) = 103\)
\(\displaystyle a \! \left(7\right) = 221\)
\(\displaystyle a \! \left(8\right) = 487\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)+3 a \! \left(n +1\right)+2 a \! \left(n +2\right)+a \! \left(n +3\right)+a \! \left(4+n \right), \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \frac{\left(\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}-52367 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-70413\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}-70413 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-38455\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{1-n}}{7367}+\frac{\left(\left(\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+\left(23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+45795 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+98930\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)^{1-n}}{7367}+\frac{\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}+28896 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+19264 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+8487\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{1-n}}{7367}+\frac{\left(\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{-n +2}}{7367}+\frac{\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+28896 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+24618\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{-n +2}}{7367}+\frac{\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{3-n}}{7367}-\frac{1145 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{1-n}}{7367}-\frac{5425 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3-n}}{7367}+\frac{5354 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n +2}}{7367}-\frac{9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n +4}}{7367}+\frac{\left(\left(\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+\left(\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}+\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}+75838 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+116208\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}+116208 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+137385\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+\left(23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}+\left(23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}+116208 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+137385\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+45795 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{2}+137385 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)+84749\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)^{-n}}{7367}+\frac{\left(\left(\left(\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+\left(-23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-45795 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-98930\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+\left(\left(-23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-45795\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-45795 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-98930\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)+\left(-45795 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-98930\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)-98930 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =4\right)-212041\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =5\right)^{-n}}{7367}+\frac{\left(\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-23471\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}+\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}-52367 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-70413\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+\left(-9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{3}-52367 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}-89677 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-46942\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)-23471 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{3}-70413 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{2}-46942 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)-6841\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =3\right)^{-n}}{7367}+\frac{\left(9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{4}+28896 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{3}+19264 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{2}+9632 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)+16630\right) \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =2\right)^{-n}}{7367}-\left(\left\{\begin{array}{cc}-16 & n =0 \\ 9 & n =1 \\ 4 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)+\frac{6998 \mathit{RootOf} \left(Z^{5}+3 Z^{4}+2 Z^{3}+Z^{2}+Z -1, \mathit{index} =1\right)^{-n}}{7367}\)
This specification was found using the strategy pack "Point Placements" and has 99 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 99 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= x^{2}\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{30}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{34}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{52}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{53}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{85}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{34}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{53}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{95}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{75}\! \left(x \right)\\
\end{align*}\)