Av(1234, 1432, 2143, 2413, 3142)
Generating Function
\(\displaystyle -\frac{x^{4}-x^{3}-2 x +1}{x^{9}+2 x^{8}-2 x^{7}-3 x^{6}-5 x^{5}+2 x^{3}-x^{2}+3 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 135, 378, 1063, 2967, 8280, 23150, 64753, 181069, 506294, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{9}+2 x^{8}-2 x^{7}-3 x^{6}-5 x^{5}+2 x^{3}-x^{2}+3 x -1\right) F \! \left(x \right)+x^{4}-x^{3}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 378\)
\(\displaystyle a \! \left(8\right) = 1063\)
\(\displaystyle a \! \left(n +4\right) = \frac{a \! \left(n \right)}{5}+\frac{2 a \! \left(n +1\right)}{5}-\frac{2 a \! \left(n +2\right)}{5}-\frac{3 a \! \left(n +3\right)}{5}+\frac{2 a \! \left(n +6\right)}{5}-\frac{a \! \left(n +7\right)}{5}+\frac{3 a \! \left(n +8\right)}{5}-\frac{a \! \left(n +9\right)}{5}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 378\)
\(\displaystyle a \! \left(8\right) = 1063\)
\(\displaystyle a \! \left(n +4\right) = \frac{a \! \left(n \right)}{5}+\frac{2 a \! \left(n +1\right)}{5}-\frac{2 a \! \left(n +2\right)}{5}-\frac{3 a \! \left(n +3\right)}{5}+\frac{2 a \! \left(n +6\right)}{5}-\frac{a \! \left(n +7\right)}{5}+\frac{3 a \! \left(n +8\right)}{5}-\frac{a \! \left(n +9\right)}{5}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +7}}{47170387365229}+\frac{586857973387 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +7}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +6}}{47170387365229}+\frac{1740086537342 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +6}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +5}}{47170387365229}+\frac{591137513713 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +5}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +4}}{47170387365229}-\frac{2806475451896 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +4}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +3}}{47170387365229}-\frac{8332512980487 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +3}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +2}}{47170387365229}-\frac{2997646538106 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +2}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n +1}}{47170387365229}+\frac{1503472960610 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n +1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n -1}}{47170387365229}+\frac{2036055702173 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n -1}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =1\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =2\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =3\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =4\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =5\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =6\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =7\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =8\right)^{-n}}{47170387365229}+\frac{7925245888861 \mathit{RootOf} \left(Z^{9}+2 Z^{8}-2 Z^{7}-3 Z^{6}-5 Z^{5}+2 Z^{3}-Z^{2}+3 Z -1, \mathit{index} =9\right)^{-n}}{47170387365229}\)
This specification was found using the strategy pack "Point Placements" and has 77 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 77 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{38}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{44}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{44}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{58}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{51}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{38}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{74}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{55}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{72}\! \left(x \right)\\
\end{align*}\)