Av(1234, 1342, 3241)
Generating Function
\(\displaystyle \frac{x^{9}-6 x^{8}+22 x^{7}-53 x^{6}+92 x^{5}-104 x^{4}+76 x^{3}-35 x^{2}+9 x -1}{\left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 21, 74, 247, 769, 2247, 6238, 16649, 43132, 109257, 272073, 668704, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{5} F \! \left(x \right)-x^{9}+6 x^{8}-22 x^{7}+53 x^{6}-92 x^{5}+104 x^{4}-76 x^{3}+35 x^{2}-9 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 74\)
\(\displaystyle a \! \left(6\right) = 247\)
\(\displaystyle a \! \left(7\right) = 769\)
\(\displaystyle a \! \left(8\right) = 2247\)
\(\displaystyle a \! \left(9\right) = 6238\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)-8 a \! \left(n +2\right)+5 a \! \left(n +3\right)-\frac{\left(n +1\right) \left(n^{3}-7 n^{2}-30 n -72\right)}{24}, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 74\)
\(\displaystyle a \! \left(6\right) = 247\)
\(\displaystyle a \! \left(7\right) = 769\)
\(\displaystyle a \! \left(8\right) = 2247\)
\(\displaystyle a \! \left(9\right) = 6238\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)-8 a \! \left(n +2\right)+5 a \! \left(n +3\right)-\frac{\left(n +1\right) \left(n^{3}-7 n^{2}-30 n -72\right)}{24}, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-299 \left(\left(-\frac{7 \sqrt{23}}{299}+\mathrm{I}\right) \sqrt{3}-\frac{21 \,\mathrm{I} \sqrt{23}}{299}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+6440-184 \left(\left(\frac{41 \sqrt{23}}{92}+\mathrm{I}\right) \sqrt{3}-\frac{123 \,\mathrm{I} \sqrt{23}}{92}-1\right) 2^{\frac{2}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{2760}\\+\\\frac{\left(184 \,2^{\frac{2}{3}} \left(\left(-\frac{41 \sqrt{23}}{92}+\mathrm{I}\right) \sqrt{3}-\frac{123 \,\mathrm{I} \sqrt{23}}{92}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+6440+299 \,2^{\frac{1}{3}} \left(\left(\frac{7 \sqrt{23}}{299}+\mathrm{I}\right) \sqrt{3}-\frac{21 \,\mathrm{I} \sqrt{23}}{299}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{2760}\\+\\\frac{\left(\left(164 \sqrt{3}\, 2^{\frac{2}{3}} \sqrt{23}-368 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+6440+\left(-14 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}+598 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{2760}\\-\frac{n^{4}}{24}+\frac{n^{3}}{4}+\frac{25 n^{2}}{24}+\frac{15 n}{4}-27 \,2^{n -1}+7 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 323 rules.
Found on January 18, 2022.Finding the specification took 33 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 323 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{243}\! \left(x \right)\\
F_{21}\! \left(x \right) &= 0\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{53}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{72}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{4}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{100}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{101}\! \left(x \right)+F_{198}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{104}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{105}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{171}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{123}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{124}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{134}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{129}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{140}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{139}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{170}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)+F_{150}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{143}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{161}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{157}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{158}\! \left(x \right) &= F_{159}\! \left(x \right)+F_{160}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{164}\! \left(x \right)+F_{165}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{166}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{166}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{171}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{172}\! \left(x \right)+F_{194}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{173}\! \left(x \right) &= F_{174}\! \left(x \right)+F_{179}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{175}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{177}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{178}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{112}\! \left(x \right)\\
F_{179}\! \left(x \right) &= F_{180}\! \left(x \right)+F_{185}\! \left(x \right)\\
F_{180}\! \left(x \right) &= F_{181}\! \left(x \right)\\
F_{181}\! \left(x \right) &= F_{182}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{182}\! \left(x \right) &= F_{183}\! \left(x \right)+F_{184}\! \left(x \right)\\
F_{183}\! \left(x \right) &= F_{104}\! \left(x \right)\\
F_{184}\! \left(x \right) &= F_{180}\! \left(x \right)\\
F_{185}\! \left(x \right) &= F_{186}\! \left(x \right)\\
F_{186}\! \left(x \right) &= F_{187}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{187}\! \left(x \right) &= F_{188}\! \left(x \right)+F_{189}\! \left(x \right)\\
F_{188}\! \left(x \right) &= F_{175}\! \left(x \right)\\
F_{189}\! \left(x \right) &= F_{190}\! \left(x \right)\\
F_{190}\! \left(x \right) &= F_{191}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{191}\! \left(x \right) &= F_{192}\! \left(x \right)+F_{193}\! \left(x \right)\\
F_{192}\! \left(x \right) &= F_{175}\! \left(x \right)\\
F_{193}\! \left(x \right) &= F_{190}\! \left(x \right)\\
F_{194}\! \left(x \right) &= F_{195}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{195}\! \left(x \right) &= F_{196}\! \left(x \right)+F_{197}\! \left(x \right)\\
F_{196}\! \left(x \right) &= F_{146}\! \left(x \right)\\
F_{197}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{198}\! \left(x \right) &= F_{199}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{199}\! \left(x \right) &= F_{200}\! \left(x \right)+F_{227}\! \left(x \right)\\
F_{200}\! \left(x \right) &= F_{201}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{201}\! \left(x \right) &= F_{202}\! \left(x \right)\\
F_{202}\! \left(x \right) &= F_{203}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{203}\! \left(x \right) &= F_{204}\! \left(x \right)+F_{206}\! \left(x \right)\\
F_{204}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{205}\! \left(x \right) &= F_{105}\! \left(x \right)\\
F_{206}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{207}\! \left(x \right)\\
F_{207}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{194}\! \left(x \right)+F_{208}\! \left(x \right)\\
F_{208}\! \left(x \right) &= F_{209}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{209}\! \left(x \right) &= F_{210}\! \left(x \right)+F_{212}\! \left(x \right)\\
F_{210}\! \left(x \right) &= F_{205}\! \left(x \right)+F_{211}\! \left(x \right)\\
F_{211}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{212}\! \left(x \right) &= F_{213}\! \left(x \right)+F_{218}\! \left(x \right)\\
F_{213}\! \left(x \right) &= F_{214}\! \left(x \right)\\
F_{214}\! \left(x \right) &= F_{215}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{215}\! \left(x \right) &= F_{216}\! \left(x \right)+F_{217}\! \left(x \right)\\
F_{216}\! \left(x \right) &= F_{205}\! \left(x \right)\\
F_{217}\! \left(x \right) &= F_{213}\! \left(x \right)\\
F_{218}\! \left(x \right) &= F_{219}\! \left(x \right)\\
F_{219}\! \left(x \right) &= F_{220}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{220}\! \left(x \right) &= F_{221}\! \left(x \right)+F_{222}\! \left(x \right)\\
F_{221}\! \left(x \right) &= F_{211}\! \left(x \right)\\
F_{222}\! \left(x \right) &= F_{223}\! \left(x \right)\\
F_{223}\! \left(x \right) &= F_{224}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{224}\! \left(x \right) &= F_{225}\! \left(x \right)+F_{226}\! \left(x \right)\\
F_{225}\! \left(x \right) &= F_{211}\! \left(x \right)\\
F_{226}\! \left(x \right) &= F_{223}\! \left(x \right)\\
F_{227}\! \left(x \right) &= F_{228}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{228}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{143}\! \left(x \right)+F_{229}\! \left(x \right)\\
F_{229}\! \left(x \right) &= F_{230}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{230}\! \left(x \right) &= F_{231}\! \left(x \right)+F_{233}\! \left(x \right)\\
F_{231}\! \left(x \right) &= F_{232}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{232}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{233}\! \left(x \right) &= F_{156}\! \left(x \right)+F_{234}\! \left(x \right)\\
F_{234}\! \left(x \right) &= F_{235}\! \left(x \right)\\
F_{235}\! \left(x \right) &= F_{236}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{236}\! \left(x \right) &= F_{237}\! \left(x \right)+F_{238}\! \left(x \right)\\
F_{237}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{238}\! \left(x \right) &= F_{239}\! \left(x \right)\\
F_{239}\! \left(x \right) &= F_{240}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{240}\! \left(x \right) &= F_{241}\! \left(x \right)+F_{242}\! \left(x \right)\\
F_{241}\! \left(x \right) &= F_{232}\! \left(x \right)\\
F_{242}\! \left(x \right) &= F_{239}\! \left(x \right)\\
F_{243}\! \left(x \right) &= F_{244}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{244}\! \left(x \right) &= F_{245}\! \left(x \right)+F_{307}\! \left(x \right)\\
F_{245}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{246}\! \left(x \right)\\
F_{246}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{247}\! \left(x \right)+F_{306}\! \left(x \right)\\
F_{247}\! \left(x \right) &= F_{248}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{248}\! \left(x \right) &= F_{249}\! \left(x \right)+F_{253}\! \left(x \right)\\
F_{249}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{250}\! \left(x \right)\\
F_{250}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{251}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{251}\! \left(x \right) &= F_{252}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{252}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{253}\! \left(x \right) &= F_{254}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{254}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{198}\! \left(x \right)+F_{255}\! \left(x \right)\\
F_{255}\! \left(x \right) &= F_{256}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{256}\! \left(x \right) &= F_{257}\! \left(x \right)+F_{259}\! \left(x \right)\\
F_{257}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{258}\! \left(x \right)\\
F_{258}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{105}\! \left(x \right)+F_{109}\! \left(x \right)\\
F_{259}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{286}\! \left(x \right)\\
F_{260}\! \left(x \right) &= F_{261}\! \left(x \right)\\
F_{261}\! \left(x \right) &= F_{262}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{262}\! \left(x \right) &= F_{263}\! \left(x \right)+F_{265}\! \left(x \right)\\
F_{263}\! \left(x \right) &= F_{250}\! \left(x \right)+F_{264}\! \left(x \right)\\
F_{264}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{265}\! \left(x \right) &= F_{260}\! \left(x \right)+F_{266}\! \left(x \right)\\
F_{266}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{143}\! \left(x \right)+F_{267}\! \left(x \right)\\
F_{267}\! \left(x \right) &= F_{268}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{268}\! \left(x \right) &= F_{269}\! \left(x \right)+F_{271}\! \left(x \right)\\
F_{269}\! \left(x \right) &= F_{264}\! \left(x \right)+F_{270}\! \left(x \right)\\
F_{270}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{271}\! \left(x \right) &= F_{272}\! \left(x \right)+F_{277}\! \left(x \right)\\
F_{272}\! \left(x \right) &= F_{273}\! \left(x \right)\\
F_{273}\! \left(x \right) &= F_{274}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{274}\! \left(x \right) &= F_{275}\! \left(x \right)+F_{276}\! \left(x \right)\\
F_{275}\! \left(x \right) &= F_{264}\! \left(x \right)\\
F_{276}\! \left(x \right) &= F_{272}\! \left(x \right)\\
F_{277}\! \left(x \right) &= F_{278}\! \left(x \right)\\
F_{278}\! \left(x \right) &= F_{279}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{279}\! \left(x \right) &= F_{280}\! \left(x \right)+F_{281}\! \left(x \right)\\
F_{280}\! \left(x \right) &= F_{270}\! \left(x \right)\\
F_{281}\! \left(x \right) &= F_{282}\! \left(x \right)\\
F_{282}\! \left(x \right) &= F_{283}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{283}\! \left(x \right) &= F_{284}\! \left(x \right)+F_{285}\! \left(x \right)\\
F_{284}\! \left(x \right) &= F_{270}\! \left(x \right)\\
F_{285}\! \left(x \right) &= F_{282}\! \left(x \right)\\
F_{286}\! \left(x \right) &= 3 F_{21}\! \left(x \right)+F_{194}\! \left(x \right)+F_{287}\! \left(x \right)\\
F_{287}\! \left(x \right) &= F_{288}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{288}\! \left(x \right) &= F_{289}\! \left(x \right)+F_{291}\! \left(x \right)\\
F_{289}\! \left(x \right) &= F_{258}\! \left(x \right)+F_{290}\! \left(x \right)\\
F_{290}\! \left(x \right) &= F_{176}\! \left(x \right)\\
F_{291}\! \left(x \right) &= F_{292}\! \left(x \right)+F_{297}\! \left(x \right)\\
F_{292}\! \left(x \right) &= F_{293}\! \left(x \right)\\
F_{293}\! \left(x \right) &= F_{294}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{294}\! \left(x \right) &= F_{295}\! \left(x \right)+F_{296}\! \left(x \right)\\
F_{295}\! \left(x \right) &= F_{258}\! \left(x \right)\\
F_{296}\! \left(x \right) &= F_{292}\! \left(x \right)\\
F_{297}\! \left(x \right) &= F_{298}\! \left(x \right)\\
F_{298}\! \left(x \right) &= F_{299}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{299}\! \left(x \right) &= F_{300}\! \left(x \right)+F_{301}\! \left(x \right)\\
F_{300}\! \left(x \right) &= F_{290}\! \left(x \right)\\
F_{301}\! \left(x \right) &= F_{302}\! \left(x \right)\\
F_{302}\! \left(x \right) &= F_{303}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{303}\! \left(x \right) &= F_{304}\! \left(x \right)+F_{305}\! \left(x \right)\\
F_{304}\! \left(x \right) &= F_{290}\! \left(x \right)\\
F_{305}\! \left(x \right) &= F_{302}\! \left(x \right)\\
F_{306}\! \left(x \right) &= F_{245}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{307}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{308}\! \left(x \right)\\
F_{308}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{309}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{309}\! \left(x \right) &= F_{310}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{310}\! \left(x \right) &= F_{311}\! \left(x \right)+F_{313}\! \left(x \right)\\
F_{311}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{312}\! \left(x \right)\\
F_{312}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{313}\! \left(x \right) &= F_{314}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{314}\! \left(x \right) &= F_{315}\! \left(x \right)\\
F_{315}\! \left(x \right) &= F_{316}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{316}\! \left(x \right) &= F_{317}\! \left(x \right)+F_{318}\! \left(x \right)\\
F_{317}\! \left(x \right) &= F_{312}\! \left(x \right)\\
F_{318}\! \left(x \right) &= F_{319}\! \left(x \right)\\
F_{319}\! \left(x \right) &= F_{320}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{320}\! \left(x \right) &= F_{321}\! \left(x \right)+F_{322}\! \left(x \right)\\
F_{321}\! \left(x \right) &= F_{312}\! \left(x \right)\\
F_{322}\! \left(x \right) &= F_{319}\! \left(x \right)\\
\end{align*}\)