Av(1234, 1342, 3214, 3241, 4213)
Generating Function
\(\displaystyle -\frac{3 x^{11}-14 x^{10}+30 x^{9}-37 x^{8}+20 x^{7}+x^{6}-13 x^{5}+15 x^{4}-19 x^{3}+15 x^{2}-6 x +1}{\left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 110, 234, 491, 1036, 2224, 4875, 10890, 24683, 56510, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-2 x^{2}+3 x -1\right) \left(x -1\right)^{4} F \! \left(x \right)+3 x^{11}-14 x^{10}+30 x^{9}-37 x^{8}+20 x^{7}+x^{6}-13 x^{5}+15 x^{4}-19 x^{3}+15 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 110\)
\(\displaystyle a \! \left(7\right) = 234\)
\(\displaystyle a \! \left(8\right) = 491\)
\(\displaystyle a \! \left(9\right) = 1036\)
\(\displaystyle a \! \left(10\right) = 2224\)
\(\displaystyle a \! \left(11\right) = 4875\)
\(\displaystyle a \! \left(n +3\right) = -\frac{2 n^{3}}{3}+\frac{5 n^{2}}{2}+3 a \! \left(n +2\right)+a \! \left(n \right)-2 a \! \left(n +1\right)-\frac{29 n}{6}+4, \quad n \geq 12\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 110\)
\(\displaystyle a \! \left(7\right) = 234\)
\(\displaystyle a \! \left(8\right) = 491\)
\(\displaystyle a \! \left(9\right) = 1036\)
\(\displaystyle a \! \left(10\right) = 2224\)
\(\displaystyle a \! \left(11\right) = 4875\)
\(\displaystyle a \! \left(n +3\right) = -\frac{2 n^{3}}{3}+\frac{5 n^{2}}{2}+3 a \! \left(n +2\right)+a \! \left(n \right)-2 a \! \left(n +1\right)-\frac{29 n}{6}+4, \quad n \geq 12\)
Explicit Closed Form
\(\displaystyle -8-\frac{2 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{23}+\frac{8 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{23}+\frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{23}+\frac{2 n^{3}}{3}-\frac{9 n^{2}}{2}+\frac{71 n}{6}-\left(\left\{\begin{array}{cc}-8 & n =0 \\ 3 & n =2 \\ 4 & n =3 \\ 3 & n =4 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 75 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 75 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{36}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{35}\! \left(x \right) &= 0\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{57}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{40}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{66}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{18}\! \left(x \right)\\
\end{align*}\)