Av(1234, 1342, 3124, 3142, 4231)
Generating Function
\(\displaystyle -\frac{\left(x^{2}-x +1\right) \left(2 x^{6}-10 x^{5}+26 x^{4}-32 x^{3}+21 x^{2}-7 x +1\right)}{\left(x -1\right)^{9}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 143, 339, 746, 1546, 3049, 5765, 10506, 18526, 31708, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{9} F \! \left(x \right)+\left(x^{2}-x +1\right) \left(2 x^{6}-10 x^{5}+26 x^{4}-32 x^{3}+21 x^{2}-7 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 143\)
\(\displaystyle a \! \left(7\right) = 339\)
\(\displaystyle a \! \left(8\right) = 746\)
\(\displaystyle a \! \left(n \right) = 1-\frac{313}{840} n +\frac{367}{5760} n^{4}-\frac{19}{160} n^{3}+\frac{11}{2880} n^{6}-\frac{1}{120} n^{5}-\frac{1}{3360} n^{7}+\frac{1}{40320} n^{8}+\frac{1453}{3360} n^{2}, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 143\)
\(\displaystyle a \! \left(7\right) = 339\)
\(\displaystyle a \! \left(8\right) = 746\)
\(\displaystyle a \! \left(n \right) = 1-\frac{313}{840} n +\frac{367}{5760} n^{4}-\frac{19}{160} n^{3}+\frac{11}{2880} n^{6}-\frac{1}{120} n^{5}-\frac{1}{3360} n^{7}+\frac{1}{40320} n^{8}+\frac{1453}{3360} n^{2}, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle 1-\frac{313}{840} n +\frac{367}{5760} n^{4}-\frac{19}{160} n^{3}+\frac{11}{2880} n^{6}-\frac{1}{120} n^{5}-\frac{1}{3360} n^{7}+\frac{1}{40320} n^{8}+\frac{1453}{3360} n^{2}\)
This specification was found using the strategy pack "Point Placements" and has 65 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 65 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{30}\! \left(x \right) &= 0\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{38}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{30}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{60}\! \left(x \right)\\
\end{align*}\)