Av(1234, 1342, 2413, 3142, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{x^{6}-8 x^{5}+19 x^{4}-22 x^{3}+16 x^{2}-6 x +1}{\left(x -1\right)^{7}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 141, 323, 673, 1297, 2344, 4016, 6579, 10375, 15835, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{7} F \! \left(x \right)+x^{6}-8 x^{5}+19 x^{4}-22 x^{3}+16 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 141\)
\(\displaystyle a \! \left(n \right) = 1+\frac{1}{80} n^{5}-\frac{7}{144} n^{4}+\frac{3}{16} n^{3}+\frac{17}{360} n^{2}-\frac{1}{5} n +\frac{1}{720} n^{6}, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle 1+\frac{1}{80} n^{5}-\frac{7}{144} n^{4}+\frac{3}{16} n^{3}+\frac{17}{360} n^{2}-\frac{1}{5} n +\frac{1}{720} n^{6}\)

This specification was found using the strategy pack "Point Placements" and has 60 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 60 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{21}\! \left(x \right) &= 0\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= 2 F_{21}\! \left(x \right)+F_{28}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{36}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{55}\! \left(x \right)\\ \end{align*}\)